AD A O 47925

COMPUTER PROGRAM FOR DESIGN AND PERFORMANCE ANALYSIS OF NAVIGATION-AID POWER SYSTEMS

Program Documentation
Volume I
Software Requirements Document

July 1977

Final Report

Prepared for

DEPARTMENT OF TRANSPORTATION UNITED STATES COAST GUARD

Office of Research and Development Washington, D.C. 20590

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

The contents of this report reflect the views of the Jet Propulsion Laboratory, which is responsible for the facts and accuracy of data presented. This report does not constitute a standard, specification or regulation.

D. Z. Sirkines

DONALD L. BIRKIMER, Ph.D., P.E.

Technical Director

U.S. Coast Guard Research and Development Center Avery Point, Groton, Connecticut 06340 2 Gavernment Accession No. 3 Recipient's Catalog No.

CG-D-11-77			1	
4. Title and Subject			A REPORT DATE	7
COMPUTER PROGRAM FOR DESIGN A ANALYSIS OF NAVIGATION-AID PO		\(\frac{1}{2}\)	Jul 77	1
Program Documentation, Volume		irements	Pulaming Ou	Converse Cod
ocument.	= =		1 2 2 8	TOTAL Report No.
2 asharlat		Cit	1	,
G./Goltz, L.M./Kaisery H./Weir		(4)	JPL	-5ø4ø-27
Jet Propulsion Laboratory			10. Work Unit No	(TRAIS)
4800 Oak Grove Drive	✓		11 Contract or G	rent No
Pasadena, California 91103			1	-70099-5-50352
				rt and Period Covered
12. Sponsoring Agency Fighe and Address		(0	V /	
Department of Transportation	\checkmark	(7	Final Rep	■t.) /
U.S. Coast Guard Office of Research and Develop	nment	\sim	14. Sponsoring Ag	ency Code
Washington, D.C. 20590	ршено			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
15. Supplementary Notes				
The contract under which this				
of the Coast Guard Research as Center Report 18/76 number he	nd Development Ce as been assigned	nter, Groto	on, Connectic	ut, 06340. R&D
16 Abstract	an occu and Rued	·		
	bas dansland		,	deuch oped
The Jet Propulsion Laboratory analyzing the performance of a Guard Navigational Aids. This Analysis (DSPA) Computer Program of the DSPA program is to eval	solar array/batte s program is call ram. The basic f luate functional	ed the Desi unction of and economi	gn Synthesis the Design S c criteria t	/Performance Synthesis portion to provide
analyzing the performance of a Guard Navigational Aids. This Analysis (DSPA) Computer Progr	solar array/battes program is call ram. The basic fluate functional ar array/battery ion of the DSPA psystems under spessoftware require occurs within the	ed the Desi unction of and economi power syste rogram is t cific loads ments for t e program,	gn Synthesis the Design S c criteria t ms. The bas o simulate t and environ the DSPA comp and defines	Performance synthesis portion to provide ic function of the operation mental conditions outer program, the necessary
analyzing the performance of Guard Navigational Aids. This Analysis (DSPA) Computer Prograf the DSPA program is to evaluate specifications for viable sold the Performance Analysis port of solar array/battery power of this document establishes the discusses the processing that	solar array/battes program is call ram. The basic fluate functional ar array/battery ion of the DSPA psystems under spesoftware require occurs within the	ed the Desi unction of and economi power syste rogram is t cific loads ments for t e program,	gn Synthesis the Design S c criteria t ms. The bas o simulate t and environ the DSPA comp	Performance synthesis portion to provide ic function of the operation mental conditions outer program, the necessary
analyzing the performance of Guard Navigational Aids. This Analysis (DSPA) Computer Prograf the DSPA program is to evaluate specifications for viable sold the Performance Analysis port of solar array/battery power of this document establishes the discusses the processing that interfaces for operation.	solar array/battes program is call ram. The basic fluate functional ar array/battery ion of the DSPA psystems under specture occurs within the	ed the Desi unction of and economi power syste program is to cific loads ments for to program,	gn Synthesis the Design S c criteria t ms. The bas so simulate t and environ the DSPA comp and defines	Performance synthesis portion to provide ic function of the operation mental conditions outer program, the necessary
analyzing the performance of Guard Navigational Aids. This Analysis (DSPA) Computer Prograf the DSPA program is to evaluate specifications for viable solutions for viable soluti	solar array/battes program is call ram. The basic fluate functional ar array/battery ion of the DSPA psystems under spessoftware require occurs within the cocurs within the latestical trial Power ty	ed the Designation of and economic power system of the cific loads ments for the program, D-11 Distriction loads Commission of the program, D-11 Distriction loads Commission of the program, Distriction loads Commission of the program, Distriction loads Commission of the program of the program of the loads Commission of the program of the loads Commission of the loads Distriction of the loads	gn Synthesis the Design Street of the Series of the base of simulate the sand environment of the DSPA compand defines of the sand environment of the s	Performance synthesis portion to provide ic function of the operation mental conditions outer program, the necessary
analyzing the performance of Guard Navigational Aids. This Analysis (DSPA) Computer Prograf the DSPA program is to evaluate specifications for viable sole the Performance Analysis port of solar array/battery power of this document establishes the discusses the processing that interfaces for operation. 18 17. Key Weed, Batteries, Computer Programs, gation Aids, Power Systems, Sarrays, Solar Insolation, Stanalysis, Temperature, Terres	solar array/battes program is call ram. The basic fluate functional ar array/battery ion of the DSPA psystems under spectrum software require occurs within the cocurs within the colar tistical trial Power S	ed the Designation of and economic power system of the cific loads ments for the program, D-11 Distriction loads Commission of the program, D-11 Distriction loads Commission of the program, Distriction loads Commission of the program, Distriction loads Commission of the program of the program of the loads Commission of the program of the loads Commission of the loads Distriction of the loads	gn Synthesis the Design S. c. criteria to ms. The base to simulate to and environ the DSPA compand defines 18/11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1	Performance synthesis portion to provide ic function of the operation mental conditions outer program, the necessary

1. Report flo.

METRIC CONVERSION FACTORS

	Approximels Com	Approximela Conversions to Metric Meeseres	Meeseres		' ' '	**************************************		Appreximate Cenversions frem Metric Measures	ersions frem Metric	c Measures	
				9		2.7	Symbol	When You Knew	Maittely by	To Find	Symbol
į	Wen to Least	A Ademais	-			Z Z		ļ	LENGTH		
		LENGTH				oz.	(in the state of th	3	i Ches	ì,
					' ' '	61	€.	centimeters	₹.0	inches	ę .
•				(.1.	manager and the same of the sa	E	meters	3.3	feet	z 1
		9	Confidence	į		81	Ē.	meters		spre v	•
Z	-	6.0	meters	£	.1.1	the state of the s	Ē	a i director s	-	Canada	
i	1914	1.6	a demeter s	5		1					
		AREA			ייןיי	91			AREA		
		100					~ E-O	southe centimeters	91.0	Square inches	~ e i
`*	samps aches	6.6	Square centimeters		' 	\$1	~E	square meters	1.2	square yards	Þ
*	-	60.0	Square meters	"E	' '	i i i i i i i i i i i i i i i i i i i	Z E 3	square hilometers		Square miles	Ê
J.	specia some	8.0	square naters	ે			2	hectares (10,000 m²)	3.5	acres	
ì	Sayou autribs	5.6	square hilmreters		Ί΄						
	ACTOR	₹'0	hectares.	2		£1					
	3	MASS (mainty)			'l' 5			ı	MASS (weight)		
					'l'	21 			92.0	Section 2	ò
3	***************************************	22	Stewart	•	Ί'		o .	Sweet of	2.2	Counds	2
#	Î	0.45	R. chepter deriva	64	'1	11	7 -	tonnes (1000 kg)	: =	short tons	
	short toms	6.0	Commes	-	'	de commente de com	•				
	4 000C	107			l' '	O 1					
	ı	VOLUME			' ' 	Annual control of the		j	VOLUME	•	
					' ' '		ī	m.flittens	000	fluid ounces	1 02
ž	-	٠;	milliters.	ŧ i	1.		₹ -	Libera	2.1	pints	8
ž	independent.	£ 1	melliliters.	Ē	3	And the second s		116-1	8	quarts	5
3 .	-	- C	luler's	-	Ϊ'	2	-	liters	9.0	gallons	3
. 1	i	0.47	inters	_	l'		ĨE.	Cubic meters	35	cubic feet	£
. 5	i	6.9	liters	-	'l'		Ē	cubic meters	1.3	cubic yards	, p
3	-	3.8	1.1045	_'	'1						
•	Cubic feet	0.03	Cubic neters	F		1		74.	TEMPERATURE (exect)	_	
ž	Spart Super	200	Cubic merters	È	'	Annual Control of the		ı			
	TEMPI	TEMPERATURE (eract)				The second secon	Ů,	Celsius	3. 5 (Then	Fabrenheit	,*
					" "	And order discontinuous constraintendente destructions of the constraint of the cons		temperature	add 32)	temperature	
<u>.</u>	· december i	5.9 (4)00	Ceisrus	Ų	1	£					
	territories	subtracting 32:	terr part atua		' ' ' 	2		95 32	986	212 202	
7 4 4 7		State of the state	A 13 Car	D 44 50		200000 200000 200000 200000 200000		7 4 7 4	1	1	
Court of Bench	Courts of the same and the same, france to the same	÷			ches	produced and the second and the seco	1	0 02- 04-	37		

5040-27 (Change 1)

TABLE OF CONTENTS

ODOM TON		
SECTION		PAGE
1.	INTRODUCTION	1-1
2.	PROGRAM OVERVIEW	2-1
3.	DESIGN SYNTHESIS	3 - 1
	3.1 Terminator Characteristics	
	3.2 Clear Day Solar Insolation	3-54
	3.3 Solar Array Electrical Characteristics	3-57
	3.4 Power Conditioning and Distribution Group	3 -6 2
14.		3-71
	PERFORMANCE ANALYSIS	4-1
	4.1 Power Sources Group	4-18
	4.1.1 Shunt Limiters	4-48
	4.2 Energy Storage Group	4-58
	4.3 Power Conditioning and Distribution Group	4-68
5.	MERGE	5-1
	5.1 Creation of a MERGE File (TDF14)	5-1
	5.2 Addition of Solar Insolation Data to MERGE File (DECK280)	5 0
	5.3 Displaying MERGE File Data (LISTMERGE)	5 - 2
6.	CMAM	5-3
•		6-1
	6.1 Statistical Analysis of MERGE Data (STATS)	6-1
	6.2 Environmental Profiling of STATS Data (PROFILE)	6-8
	FIGURES: 2-1 Design Synthesis Performance Analysis Computer Program	
	3-1 Power System Design Synthesis	2-2
	Joseph Dynthesis	3-2
	Type terrorisance Analysis	4-2 N for
	compact ogrand Overview	White Section &
	- Open to Open to the total total to the total total to the total t	5-2 Buff Section
	output and a contract of the c	5-3 NCED
	5-4 LISTMERGE Computer Program	5-4
	j.	\$4 miles 10
	<u>l</u>	DISTRIBUTION/AVAILABILITY CODES
		Dist. AVAIL and/or SPECIAL

5040-27 (Change 1)

TABLE OF CONTENTS (contd)

			PAGE
FIGURES:	6-1	STAT Computer Programs Overview	6-1
(contd)	6-2	STATS Computer Program	6-3
	6-3	PROFILE Computer Program	6-8

1. INTRODUCTION

The Jet Propulsion Laboratory (JPL) has developed a computer program for designing and analyzing the performance of solar array/battery power systems for the U.S. Coast Guard Navigational Aids. This program is called the Design Synthesis/Performance Analysis (DSPA) Computer Program. The basic function of the Design Synthesis portion of the DSPA program is to evaluate functional and economic criteria to provide specifications for viable solar array/battery power systems. The basic function of the Performance Analysis portion of the DSPA program is to simulate the operation of solar array/battery power systems under specific loads and environmental conditions.

This document establishes the software requirements for the DSPA computer program, discusses the processing that occurs within the program, and defines the necessary interfaces for operation.

2. PROGRAM OVERVIEW

The DSPA computer program combines the elements of design synthesis and performance analysis. A functional block diagram of the main driver program is shown in Figure 2-1. As shown in this figure and the algorithms which follow, the DSPA computer program utilizes the following methodology.

- a. The program user selects the desired power system arrangement.
- b. If a design synthesis is not required, then the program user must provide information on the electrical size of the equipment.
- c. If a design synthesis is requested, the program user muct supply information on the parameters used in determining the various profiles. The computer program then calculates the load and environmental profiles needed for a local profile analysis. Based on a profile energy balance determined as part of the load profile analysis, the computer estimates the electrical size of the equipment required and then determines the physical characteristics of the selected equipment. The calculated data along with significant input data is printed out in the appropriate output data format.
- d. If performance analysis is not required, the execution of the DSPA program is terminated.
- e. If performance analysis is required, the program user must provide information on the parameters used in determining the various profiles. The computer program then calculates the values of the load and environment at the start of the selected mission period. These stimuli (load and environment) are used to calculate the response (operational characteristics) of the equipment at that point in time. The process is repeated for selected time increments until the power system operational characteristics for the entire mission period have been determined. This information is then printed in the appropriate output data formats, and execution of the program is terminated.

Flow charts of the DSPA subprograms were not furnished in the Program Documentation volumes since:

- Most computer facilities have programs which automatically produce subroutine flow charts. If such charts are desired, the program user can easily select the subroutine of interest and obtain a copy of the latest version of the subroutine.
- Preparation, reproduction, and inclusion of all of the present versions of the DSPA subroutines in the Program Documentation would be more costly than if the flow charts were prepared by the program user automatically. Additionally, these flow charts would become obsolete as modifications were made to the DSPA computer program.

FIGURE 2-1. DESIGN SYNTHESIS PERFORMANCE ANALYSIS COMPUTER PROGRAM

PROGRAM ALGORITHMS

Step 1 Obtain Program Parameters

IPRG = Program Selector:

0 = Design Synthesis only

1 = Performance Analysis only

2 = Both Design Synthesis and Performance Analysis

ITAPE = Weather Data Input Selector:

-1 = Statistical Input Tape

0 = User Input Data

YYDDD = Merge Tape Input beginning at year = YY and day = DDD

DEBUG = Debug Printout Request Flag:

0 = No printout

1 = Printout

XLN = Length of X-axis (in inches) for summary plots

YLN = Length of Y-axis (in inches) for summary plots

Step 2 Execute Design Synthesis program if requested

If: IPRG ≠ 1
Then: Call DSDRVR

Step 3 Execute Performance Analysis program if requested

If: IPRG ≠ 0
Then: Call PADRVR

Step 4 STOP DS/PA

3. DESIGN SYNTHESIS

The Design Synthesis portion of the DSPA program uses load and environmental profiles to set the power system requirements. Based on these requirements and on the electrical characteristics of the system equipment, the computer program determines the electrical size (volts, amperes, watts, ampere-hours, watt-hours) and the physical characteristics (weight, area, cost) of the power system. A functional block diagram of the Design Synthesis driver program is shown in Figure 3-1. As shown, the selection of lamp and flasher combinations as well as the day/night load durations enables the computer program to estimate a power load profile. This profile, after modification using battery charge-efficiency and a number of power system cabling and diode losses, is used in the load profile analysis. The object of the load prof le analysis is to determine the electrical size of a balanced power source as well as the minimum theoretical electrical size of the battery. Once this information is obtained, it is a fairly straight forward process to determine the electrical size of the remaining items of equipment.

Balanced power source: a power source which provides just enough energy to the batteries (during recharge periods) to offset or balance the energy loss sustained during discharge periods.

FIGURE 3-1. POWER SYSTEM DESIGN SYNTHESIS

PROGRAM ALCORITHMS

Step 1 Obtain Pertinent Mission and Equipment Information

QØN = Solar Insolation Level for Lamp Flasher Turn-On - Watts/Meter²

QØFF = Solar Insolation Level for Lamp Flasher Turn-Off - Watts/Meter²

VBUS = Nominal value of Raw Power Bus Operating level - VDC

VBUSMN = Minimum allowable Raw Power Bus Operating
 voltage - VDC

 $TTAVE = Average yearly temperature in location selected - <math>\circ_F$

INDFLS = Lamp Flasher Condition Indicator

Where: 0 = Lamp Flasher is Off (Lamp Not Flashing)

1 = Lamp Flasher is On (Lamp Flashing)

DTTESG = Energy Storage Group Temperature Rise - °F

QBRES = Battery Reserve (as Stage-of-Charge)

BRCEST = Estimated Normalized Battery Charge Current - Hours-1

ICHRT = Battery Charger Type

Where: 0 = No Battery Charger

1 = Constant Voltage Charger with Current
Limit

DTTPSG = Power Source Group Equipment Temperature Rise - °F

DURAM = Duration of Mission - Years

SARES = Solar Array Reserve (as a fraction of total area)

NPREQ = Number of Solar Cells in Parallel Required for each Solar Cell Array Electrical Section CELPAC = Solar Cell Packing Factor on Solar Array

NSAP = Total Number of Solar Arrays to be Procured

BRCHMX = Maximum Allowable Normalized Battery Charge Current - Hours⁻¹

ISH = Shunt Limiter Type

0 = No Shunt Limiter

1 = Ordinary Zener Diode

2 = Temperature-Compensated Zener Diode

3 = Active Shunt Limiter

FRCELL = Biasing Factor for Selecting the Number of Storage Cells in Series in the Battery

 $(0.0 \leq FRCELL \leq 1.0)$

as: FRCELL → 0.0 the minimum number of cells tend to be selected

as: FRCELL - 1.0 the maximum number of cells tend to be selected

BRDSTD = Standard Normalized Battery Discharge Current - Hours-1

TBDSTD = Standard Battery Discharge Temperature - °F

CBAVAL(JB) = Table of Available Storage Cell Capacities, from a
Given Manufacturer, in increasing order of
size - Amp-Hours/Cell

(JB = 1.30 maximum)

CBMAX = Maximum desired capacity of each battery - Amp-Hours

HDZMX = Maximum Heat Dissipation of a Single Zener Diode - Watts

HDER = Heat Dissipation Derating Factor for a Single Zener Diode

ACELL = Single Solar Cell Area - cm²

Step la Compare Raw Power Bus Voltage with Allowable Minimum

If: VBUS < VBUSMN.

Then: VBUS = VBUSMN + 4.0, and,

Then: Print out the following statement:

"VBUS ADJUSTED TO (... VBUS ...) VOLTS"

Step 1b Obtain Yearly Temperature Extremes

If: ITAPE = 0
Then: GO TO STEP 2

If: ITAPE ≠ 0

Then: Obtain TTABMX and TTABMN from 'MERGE' File, and,

Then: GO TO STEP 5

Where: TTABMX = Maximum Value of the Ambient Temperature -

°F

TTABMN = Minimum Value of the Ambient Temperature -

Step 2 Calculate Daily Temperature Increment Extremes

DTTA = DTTA1 {DATE}

DTTAMX = Maximum Value of DTTA over the range:

DATE = 1;365 days

DTTAMN = Minimum Value of DTTA over the range:

DATE = 1:365 days

Where: DTTA = Average Daily Temperature Increment - °F

DATE = Days from start of the year - days (1-365)

DTTAl = Input table of DTTA as a function of DATE

Step 3 Calculate Hourly Temperature Increment Extremes

DTTAMB = DTAMB1 (TIMEH)

DTABMX = Maximum Value of DDTAMB over the range:

TIMEH = 0:24 hours

Step 3 (contd)

DTABMN = Minimum Value of DTTAMB over the range:

TIMEH = 0;24 hours

Where: DTTAMB = Average Hourly Temperature Increment - °F

TIMEH = Daily Time - Hours after Midnight (0-24)

DTAMB1 = Input Table of DTTAMB as a function of TIMEH

Step 4 Calculate Ambient Temperature Extremes

TTABMX = TTAVE + DTTAMX + DTABMX

TTABMN = TTAVE + DTTAMN + DTABMN

Step 5 Obtain Power Conditioning and Distribution Group (PCDG) Characteristics at the Raw Power Bus

(Based on ambient temperature extreme which will yield the largest values of PCD Group Current)

J = 1,51 (Number of Data Points)

K = PCD Group Load Selector

1 = Lamp Off

2 = Effective Load, Lamp Flashing

3 = Lamp On

Step 6 Calculate FCD Group Loads

IFØFF = $F\{XI(J,1),XX(J,K)\}$ at XX(J,K) = VBUS

IFØN = $F\{XI(J,2),XX(J,K)\}$ at XX(J,K) = VBUS

PFØN = VBUS * IFØN

PFØFF = VBUS * IFØFF

Step 6 (contd)

Where: IFØFF = PCD Group Lamp-Off Operating Current - Amperes

IFØN = PCD Group Lamp-Flashing Operating Current -

Amperes

PFØFF = PCD Group Lamp-Off Load - Watts

PFØN = PCD Group Lamp-Flashing Load - Watts

Step 7 Obtain Free Format Data on Week Number and Compare with Reference

LWEEK = Weeks after Start of the year - (1.52)

If: LWEEK < 0, OR,

If: LWEEK > 52, Then: GO TO STEP 53

NWEEK = LWEEK

Step 8 Calculate Date After Start of the Year

DATE = (7.0 * NWEEK) - 6.0

Step 9 Obtain Terminator Characteristics

SRT = Sunrise Time - Hours after Midnight

SST = Sunset Time - Hours after Midnight

THETLA = Buoy Latitude - Radians | + North | - South

HOURT = Terminator Hour Angle - Radians

ET ... quation of Time Difference - Hours

DECL = Solar Declination Angle - Radians

ALPHAEQ = Solar Vector Location - Radians

Step 11 Calculate Daily Time Increment

DTIMEH = (SST - SRT)/10.0

Where: DTIMEH = Daily Time Increment for Clear Day Solar Insolation Calculations - Hours

Step 12 Initialize Daily Time and Time Increment Counter

LTIME = 1

TIMEH = SRT

Where: LTIME = Time Increment Counter

Step 13 Compare Time Increment Counter With Reference

If: LTIME = 1,
QDTC = 0.0

Then: SALT = 0.0 , AND, GO TO STEP 16

Where: QDTC = Clear Day Solar Insolation Incident on Solar Array - Watts/Meter²

SALT = Solar Altitude - Radians

Step 14 Compare Time Increment Counter With Reference

If: LTIME = 11,

QDTC = 0.0
SALT = 0.0
QSOL(11) = 0.0

AND GO TO STEP 16

Step 14a Compare Environmental Tape Index with Reference

If: ITAPE = 0
Then: GO TO STEP 15

Step 14b Obtain Solar Insolation from "MERGE" File

QDT = Solar Insolation Incident on Solar Array - Watts/Meter²

Step 14c Calculate Solar Insolation Incident on Solar Array

QSOL(LTIME) = QDT

GO TO STEP 16

Where: QSOL = Solar Insolation Incident on Solar Array at TIMEC - Watts/Meter²

Step 15 Obtain Clear Day Solar Insolation and Solar Altitude

QDTC = Clear Day Solar Insolation Incident on Solar Array - Watts/Meter²

SALT = Solar Altitude - Radians

Step 16 Calculate Clear Day Solar Insolation Array and Solar Altitude Array

QSOLC(LTIME) = QDTC

SALTA(LTIME) = SALT

TIMEC(LTIME) = TIMEH

Where: QSOLC = Clear Day Solar Insolation Incident on Solar Array at TIMEC - Watts/Meter²

SALTA = Solar Altitude at TIMEC - Radians

TIMEC = Daily Time - Hours after Midnight

LTIME = 1,11 (Number of data points)

Step 17 Increment Daily Time and Time Increment Counter

LTIME = LTIME + 1

TIMEH = TIMEH + DTIMEH

```
Step 18 Compare Time Increment Counter With Reference
```

If: LTIME > 11, Then: GO TO STEP 19

RETURN TO STEP 13

Step 19 Initialize Day Counter and Weekly Summary Arrays

LDAY = 1

NMR(NWEEK) = 0

TJT(NWEEK) = 0.0

TKT(NWEEK) = 0.0

TLT(NWEEK) = 0.0

QQSOLT(NWEEK) = 0.0

QSOLMX(NWEEK) = 0.0

Where: LDAY = Day of the Week Indicator - (Range 1.7)

NMR = Weekly Number of Battery Operating Mode Reversals - (Charging or Discharging)

TJT = Weekly Duration of Solar Occulatations - Hours

TKT = Weekly Duration of Share-Mode Operations - Hours

TLT = Weekly Duration of Battery-Charging Feriods - Hours

QQSOLT = Weekly Total of Solar Insolation Incident on Solar Array - Watt-Hours/Meter²

QSOLMX = Maximum Solar Insolation, Incident on Solar Array, Encountered during week - Watts/Meter²

Step 19a Compare Environmental Tape Index with Reference

If: ITAPE = 0
Then: GO TO STEP 20

GO TO STEP 23

```
Step 20
           Obtain Cloud Cover Conditions
           CT(LDAY) = Cloud type
                      0.0 = Cirrus or Cirrostratus Clouds
                      1.0 = Stratus Clouds
                      2.0 = Other Cloud Types
           TC(LDAY) = Total Cloud Cover
                       1.0 = 1/10 of sky covered
                       2.0 = 2/10 of sky covered
                       9.0 = 9/10 of sky covered
                      10.0 = 10/10 of sky covered
                ICT = 1 + IFIX(CT)
           Where: ICT = Cloud Type indicator
                         1 = Cirrus or Cirrostratus Clouds
                         2 = Stratus Clouds
                         3 = Other Cloud Types
Step 21
           Calculate Cloud Cover Modifier
                  TC = 0.0.
           If:
           Then: CCMM(LITIME) = 1.0 AND GO TO STEP 22
           If:
                  SALTA(LTIME) \leq \pi/4.0,
           Then: ISALT = 1
           If:
                  SALT(LTIME) > \pi/4.0,
           Then: ISALT = 2
           CCMM(LTIME) = PC(ICT, ISALT) + P1(ICT, ISALT) * TC + ...
                         + P2(ICT, ISALT) * (TC**2.0) + ...
                         + P3(ICT, ISALT) * (TC**3.0)
           For LTIME = 1,11
```

Step 21 (contd)

Where:

ISALT = Solar Altitude Indicator

CCMM(LTIME) = Cloud Cover Modifier

PO, P1, P2, P3 = Polynomial Coefficients obtained from input data tables "Cloud Cover Modifier Polynomial Coefficients".

Step 22 Calculate Solar Insolation Incident on Solar Array

QSOL(LTIME) = CCMM(LTIME) * QSOLC(LTIME)

For LTIME = 1.11

Step 23 Calculate Total Daily Solar Radiation Incident on Solar Array

Where: QQSOL = Total Daily Solar Insolation Incident on Solar Array - Watt-Hours/Meter²

Step 24 Calculate Maximum Solar Radiation

QSOLM(LDAY) = AMAX (QSOL(LTIME)) over the range: LTIME = 1,11

Where: QSOLM = Maximum Solar Insolation, Incident on Solar Array, Encountered during the Day - Watts/Meter²

Step 25 Initialize Time Increment and Flasher Load Counters

LTIME = 2

JTOFF = 1

JTON = 1

JOPPMX = 0

JONNX = 0

Step 25 (contd)

Where: JTOFF = Flasher Load Turn-off Period Counter

JTON = Flasher Load Turn-on Period Counter

JOFFMX = Flasher Turn-off Counter

JONMX = Flasher Turn-on Counter

Step 26 Compare Solar Insolation Incident on Solar Array With Reference

<u>If:</u> QSOL(LTIME) > QOFF <u>Then:</u> GO TO STEP 27

GO TO STEP 31

Step 27 Compare Lamp Flasher Condition Indicator With Reference

If: INDFLS = 1
Then: GO TO STEP 28

GO TO STEP 31

Step 28 Calculate Time of Lamp Flasher Turn-Off

TOFF(JTOFF) = F {TIMEC(LTIME), QSOL(LTIME)}

at: QSOL(LTIME) = QOFF and during the time interval: TIMEC(LTIME - 1) to TIMEC(LTIME)

Where: TOFF = Time at which Lamp Flasher Turns Off - Hours after Midnight

Step 29 Reset Lamp Flasher Condition Indicator

INDFLS = 0

Step 30 Increment Load Counters

JTOFF = JTOFF + 1

JOFFNOX = JTOFF - 1

GO TO STEP 36

Step 31 Compare Solar Insolation Incident on Solar Array With Reference

<u>If:</u> QSOL(LTIME) < QON <u>Then:</u> GO TO STEP 32

GO TO STEP 36

Step 32 Compare Lamp Flasher Condition Indicator With Reference

If: INDFLS = 0
Then: GO TO STEP 33

GO TO STEF 36

Step 33 Calculate Time of Lamp Flasher Turn-On

TON(JTON) = F{TIMEC(LTIME), QSOL(LTIME)}

at: QSOL(LTIME) = QON, and during the time interval: TIMEC(LTIME - 1) to TIMEC(LTIME)

Where: TON = Time at which lamp flasher turns-on - Hours after Midnight

Step 34 Reset Lamp Flasher Conditions Indicator

INDFLS = 1

Step 35 Increment Load Counters

JTON = JTON + 1

JONMX = JTON - 1

Step 36 Increment Daily Time Counter

LTIME = LTIME + 1

Step 37 Compare Daily Time Counter With Reference

If: LTIME > 11, Then: GO TO STEP 38

RETURN TO STEP 26

Step 38 Calculate Daily Mode Reversals of Battery

DNMR = JOFFMX + JONMX

Where: DNMR = Daily Operational Mode Reversals of Battery

Step 39 Calculate Daily Solar Occultation Periods

TJ = SRT + (24.0 - SST)

Where: TJ = Duration of Daily Solar Occultation Periods - Hours

Step 40 Initialize Daily Share-Mode and Battery Charging Periods

TL = 0

TK = TOFF (1) - SRT

Where: TL = Duration of Daily Battery Charging Periods - Hours

TK = Duration of Daily Share-Mode Periods - Hours

Step 41 Initialize Load Counters

JTON = 1

JIOFF = 1

Step 42 Compare Load Counters

If: JTOFF = JTON, Then: GO TO STEP 43

GO TO STEP 46

Step 43 Calculate Daily Battery Charging Periods

DTL = TON(JTON) - TOFF(JTOFF)

TL = TL + DTL

Where: DTL = Battery Charge Period Increment - Hours

Step 44 Increment Turn-Off Load Counter JTOFF = JTOFF + 1 Compare Turn-Off Load Counter With Reference Step 45 If: JTOFF > JOFFMO Then: GO TO STEP 48 JTOFF > JOFFMX, RETURN TO STEP 42 Step 46 Calculate Daily Share-Mode Periods DTK = TOFF(JTOFF) - TON(JTON)TK = TK + DTKWhere: DTK = Share-Mode Period Increment - Hours Step 47 Increment Turn-On Load Counter JTON = JTON + 1RETURN TO STEP 42 Step 48 Calculate Weekly Summary of Operational Mode Periods TJT(NWEEK) = TJT(NWEEK) + TJTKT(NWEEK) = TKT(NWEEK) + TKTLT(NWEEK) = TLT(NWEEK) + TK Step 49 Calculate Weekly Summary of Battery Mode Reversals NMR(NWEEK) = NMR(NWEEK) + DNMR Step 50 Calculate Weekly Summary of Solar Insolation QQSOLT(NWEEK) = QQSOLT(NWEEK) + QQSOL QSOLMX(NWEEK) = AMAX QSOLMX(NWEEK), QSOLM(LDAY)

Step 51 Increment Day Counter

LDAY = LDAY + 1

Step 52 Compare Day Counter With Reference

If: LDAY > 7,

Then: RETURN TO STEP 7

RETURN TO STEP 20

Step 53 Calculate Yearly Solar Occultation Load Energy

 $EPCDJ = PFON * \sum_{I=1}^{NWEEK} TJT(I)$

Where: EPCDJ = Yearly Solar Occultation Load Energy - Watts-Hours

Step 54 Calculate Yearly Share-Mode Load Energy

 $EPCDK = PFON * \bullet \sum_{T=1}^{NWEEK} TKT(I)$

Where: EPCDK = Yearly Share-Mode Load Energy - Watt-Hours

Step 55 Calculate Yearly Battery Charging Mode Load Energy

 $EPCDL = PFOFF * \sum_{I=1}^{NWEEK} TLT(I)$

Where: EPCDL = Yearly Battery Charging Mode Load Energy - Watt-Hours Step 56 Calculate Maximum Energy Storage Group Temperature

TTESMX = TTABMX + DTTESG

Where: TTESMX = Energy Storage Group Maximum Temperature - or

Step 57 Obtain Normalized Battery Current Rates

 $BRR(J,K,L) = BCQT \{VCC(J,K,L), QBB(K), TBB(L)\}$

Where: BRR = Normalized Battery Current Rates (Expressed as the Ratio of Battery Current to Battery Capacity) - Hours-1

VCC = Cell Voltage - VDC

QBB = Battery State-of-Charge

TBB = Battery Temperature - °F

BCQT = Input Table of BRR as a function of VCC, QBB
and TBB

J = 1, 9 (Data Points)

K = 1, NQBB (Data Points)

L = 1, NTBB (Data Points)

NQBB = Number of QBB entries in BCQT

NTBB = Number of TBB entries in BCQT

Step 58 Calculate Minimum Storage Cell Discharge Voltage

 $VCDMN = F \{BRR(J,K,L),QBB(K),TBB(L)\}$

at: BRR(J,K,L) = - |BRDEST|

QBB(K) = QBRES

TBB(L) = TTESMX

Where: VCDMN = Minimum Storage Cell Discharge Voltage - VDC

Step 59 Calculate Minimum Storage Cell Charge Voltage

 $VCCMN = F \{BRR(J,K,L),QBB(K),TBB(L)\}$

at: BRR(J,K,L) = BRCEST

QBB(K) = QBRES

TBB(L) = TTESMX

Where: VCCMN = Minimum Storage Cell Charge Voltage - VDC

Step 60 Calculate Minimum Battery Potential Efficiency

ETABVN = VCDMN/VCCMN

Where: ETABVN = Minimum Battery Potential Efficiency

Step 61 Calculate Battery State-of-Charge Increment

DQBB1 = (1.0 - QBRES)/10.0

Where: DQBB1 = Battery State-of-Charge Increment

Step 62 Initialize Battery SOC Counter and SOC Values

IQBB = 1

QBB1 = QBRES

Where: IQBB = Battery State-of-Charge Counter

QBB1 = Battery State-of-Charge

Step 63 Calculate Instantaneous Battery Coulombic (Charge) Efficiency

ETA(IQBB) = A {BRR, QBB, TBB}

at: BRR = BRCEST

TBB = TTESMX

QBB = QBB1

Where: ETA(IQBB) = Instantaneous Battery Coulombic Efficiency

A = A series of Input Data Tables (A1, A2, A3, A4, A5) giving ETA as a function of BRR, QBB and TBB

Step 64 Increment Battery SOC Counter and SOC Values

IQBB = IQBB + 1

QBB1 = QBB1 + DQBB1

Step 65 Compare Battery SOC Counter With Reference

If: IQBB > 11, Then: GO NO STEP 67

RETURN TO STEP 63

Step 66 Calculate Average Battery Coulombic (Charge) Efficiency

ETABQ = $\left(\frac{1.0}{1 - QBRES}\right)$ # $\int_{IQBB=1}^{IQBB=11}$ ETA(IQBB) # DQBB1 { Using Simpsons Rule of Integration}

Where: ETABQ = Average Battery Coulombic Efficiency

Step 67 Calculate Battery Energy Charge/Discharge Ratio

RATBAT = 1.0/(ETABVN * ETABQ)

Where: RATBAT = Battery Energy Charge/Discharge Ratio

Step 68 Compare Battery Charger Type With Reference

If: ICHPT = 0,
Then: GO TO STEP 75

Step 69 Calculate Battery Discharge Line Efficiency

ETAD = VBUS/(VBUS + 1.0)

Where: ETAD = Battery Discharge Line Efficiency

Step 70 Compare Raw Power Bus Operating Level With Reference

VCHIO = VCHIOT {TTESG} at: TTESG = TTESMX

If: VBUS ≤ VCHIO, Then: GO TO STEP 74

Where: VCHIO = Battery Charger Input Voltage at Turn-on

(Minimum Voltage Drop at zero current level) -

VDC

VCHIOT = Input Table of VCHIO as a function of TTESG

TTESG = Energy Storage Group Temperature - °F

Step 71 Compare Raw Power Bus Operating Level With Reference

VCHISA = VCHIST {TTESG} at: TTESG = TTESMX

If: VBUS < VCHISA, Then: GO TO STEP 72

GO TO STEP 73

Where: VCHISA = Battery Charger Input Voltage wherein Charger

Changes From "Saturated" operation to "Active"

Operation - VDC

VCHIST = Input Table of VCHISA as a function of TTESG

Step 72 Calculate Battery Charger Efficiency

ETACHG = 1.0 - (VCHIO/VBUS)

GO TO STEP 76

Where: ETACHG = Battery Charger Efficiency

Calculate Battery Charger Efficiency Step 73

ETACHG = (VCHISA - VCHIO)/VBUS

GO TO STEP 76

Calculate Battery Charger Efficiency Step 74

ETACHG = 0.0

GO TO STEP 76

Step 75 Calculate Battery Discharge Line Efficiency and Charger

Efficiency

ETAD = 1.0

ETACHG = 1.0

Step 76 Calculate Duration of Yearly Share-Mode Loads

Where: TKTT = Duration of Yearly Share-Mode Loads - Hours

Step 77 Calculate Duration of Yearly Battery Charge Mode Loads

TLTT = $\sum_{i=1}^{NWEEK} TLT(i)$

Where: TLTT = Duration of Yearly Battery Charge Mode Loads - Hours

Step 78 Calculate Power Source Group (PSG) Average Power Level

PPSGAV = RATBAT * (EPCDJ + EPCDK) + (ETAD * ETACHG * EPCDL)
(ETAD * ETACHG * TLTT) + (RATBAT * TKTT)

Where: PPSGAV = PSG Average Power Level During Year - Watts

Step 79 Calculate PSG Energy Requirement

EPSG = PPSGAV * (TKTT + TLTT)

Where: EPSC = PSG Yearly Energy Requirement - Watt-Hours

Step 80 Calculate Solar Array Energy Requirement

ESA = EPSG $\left/ \left(\frac{\text{VBUS}}{\text{VBUS} + 1.0} \right) \right.$

Where: ESA = Solar Array Yearly Energy Requirement - Watt-Hours

Step 81 Calculate Maximum Solar Array Temperature

TSAFMX = TTABMX + DTTPSG

TSARMX = TSAFMX + 459.67

TSAKMX = (5.0/9.0) * TSARMX

TSACMX = TSAKMX - 273.15

Where: TSAFMX = Maximum Solar Array Temperature - °F

TSARMX = Maximum Solar Array Temperature - °R

TSAKKX = Maximum Solar Array Temperature - °K

TSACMX = Maximum Solar Array Temperature - °C

Step 82 Calculate Maximum Instantaneous Solar Radiation

QDTMX = AMAX (QSOLMX(I)) over the range: I = 1, NWEEK

Where: QDTMX = Maximum Instantaneous Total Solar Radiation Incident on Solar Array - Watts/Meter²

Step 83 Obtain Solar Array Electrical Characteristics

Under the conditions:

- (a) TSAC = TSACMX
- (b) QDT = QDTMX
- (c) DATEM = DURAM * 365.242
- (d) NS1 = 50
- (e) NP = 50
- (f) NESP = 1

Where: TSAC = Solar Array Temperature - °C

QDT = Instantaneous Total Solar Radiation Incident on Solar Array - Watts/Meter²

DATEM = Elapsed Time from start of mission - Days

NS1 = No. of Solar Cells in Series in each circuit

NP = No. of Solar Cells in Parallel in each circuit

Then: V2(L) = Solar Array Voltage - VDC

I2(L) = Solar Array Current at V2(L) - Amperes

L = 1, MFINAL

MSAPWR = Solar Array Maximum Power - Watts

MAXV = Solar Array Voltage at Maximum Power Point -

MAXI = Solar Array Current at Maximum Power Point Amperes

Step 83a Calculate Single Cell Maximum Power

PWRMX1 = MSAPWR/(NS1 * NP * NESP)

Where: PWRMX1 = Single Cell Maximum Power Output - Watts

Step 84 Calculate Solar Cell Efficiency for End of Mission

ETAEOM = $(PWRMX1/(QDT * ACELL * 10^{-4})$

Where: ETAEOM = End-of-Mission Solar Cell Efficiency

Step 85 Calculate Total Yearly Solar Radiation

QQSTOT = $\sum_{i=1}^{NWEEK} QQSOLT(i)$

Where: QQSTOT = Total Yearly Solar Radiation Incident on Solar Array - Watt-Hours/Meter²

Step 86 Calculate Nominal Estimate of Total Solar Cell Area

ASCTNM = ESA

QQSTOT • ETAEOM • (1.0 - SARES)

Where: ASCTNM = Nominal estimate of total solar cell area - Meter²

Step 87 Calculate Nominal Estimate of Total Solar Cells

 $xnscnm = \frac{asctnm}{acell * (1.0 \times 10^{-4})}$

Where: XNSCNM = Nominal Estimate of Total Solar Cells

Step 88 Calculate Solar Array Open Circuit Voltage

 $VSCOC = F \{V2(L), I2(L)\}$ at I2(L) = 0.0

Where: VSCOC = Array Open Circuit Voltage - VDC

Step 89 Calculate Number of Solar Cells in Series Required

$$XNS = \frac{VBUS + 1.0}{\left(\frac{VSCOC + MAXV}{2.0 * NS1}\right)}$$

NS = IFIX (XNS) + 1.0

Where: XNS = Estimate of Cells in Series

NS = Number of Solar Cells in Series Required

Step 90 Calculate Number of Solar Array Electrical Sections in Parallel

 $XNESP = \frac{XNSCNM}{FLOAT(NS) * FLOAT(NPREQ)}$

NESP = IFIX(XNESP) + 1.0

Where: XNESP = Estimate of Electrical Sections in parallel

Step 91 Calculate Total Solar Cells Required

NSCTOT = NESP * NS * NPREQ

Where: NSCTOT = Total Number of Solar Cells Required for the Solar Array

Step 92 Calculate Total Solar Cell Area

ASCTOT = NSCTOT * ACELL (1.0×10^{-4})

Where: ASCTOT = Total Solar Cell Area Required for Solar Cell Array = Meter²

Step 93 Calculate Total Solar Array Area

 $ASA = \frac{ASCTOT}{CELPAC * (9.290 \times 10^{-2})}$

Where: ASA = Total Solar Array Area Required - Foot2

Step 94 Calculate Solar Array Weight

DWDA = DWDAT * ASA

WSA = ASA * DWDA

Where: DWDA = Solar Array Specific Weight - Lbs/Ft²

WSA = Solar Array Weight - Lbs

DWDAT = Input Table of DWDA as a function of ASA

Step 95 Calculate Solar Array Cost

ASATP = ASA * FLOAT (NSAP)

DCDA = DCDAT {ASATP}

CSA = ASA * DCDA

Where: ASATF = Total Area of Solar Arrays to be procured - Ft2

CSA = Solar Array Cost - \$

DCDA = Solar Array Specific Cost - \$/Ft2

DCDAT = Input Table of DCDA as a Function of ASATP

Step 96 Calculate Minimum Solar Array Temperature

TSAFMN = TTABMN + DTTPSG

TSARMN = TSAFMN + 459.67

TSAKMN = (5.0/9.0) * TSARMN

TSACMN = TSAMON - 273.15

Where: TSAFMN = Minimum Solar Array Temperature - °F

TSARMN = Minimum Solar Array Temperature - °R

TSAKON = Minimum Solar Array Temperature - "K

TSACHN = Minimum Solar Array Temperature - °C

Step 97 Obtain Solar Array Current Voltage Characteristics at the Beginning of Life

Under the conditions:

- (a) TSAC = TSACMN
- (b) QDT = QDTMX
- (c) DATEM = 0.0
- (d) NP = NPREQ
- (e) NS = NS | from above
- (f) NESP = NESP (Calculations

Then: V2(L) = Solar Array Voltage - VDC

I2(L) = Solar Array Current at V2(L) - Amperes

L = 1, MFINAL

MSAPWR = Solar Array Maximum Power - Watts

MAXV = Solar Array Voltage at Maximum Power Point - VDC

MAXI = Solar Array Current at Maximum Power Point - Amperes

Step 98 Calculate Solar Array Open Circuit Voltage (at BOL)

 $VSAOC = F \{V2(L), I2(L)\} \text{ at } I2(L) = 0.0$

Where: VSAOC = Solar Array Open Circuit Voltage - VDC

Step 99 Calculate Maximum Blocking Diode Power Loss

 $MSABDP = \left(\frac{1.0}{VBUS + 1.0}\right) + MSAPWR$

Where: MSABDP = Maximum Power Loss in all Solar Array Blocking Diodes - Watts

Calculate Solar Array Electrical Section Blocking Diode Rating Step 100

PESBD = MSABDP/FLOAT (NESP)

Where: PESBD = Electrical Section Blocking Diode Power

Rating - Watts

Step 101 Initialize Weekly Counter and Battery State

NWEEK = 1.0

BSTATE = 0.0

EBTHMX = 0.0

EBTHMN = 0.0

Where: BSTATE = Relative Energy State of the Battery -

Watt-Hours

EBTHMX = Maximum Battery Energy State - Watt-Hours

EBTHMN = Minimum Battery Energy State - Watt-Hours

Compare Weekly Counter With Reference Step 102

> If: NWEEK < 0 ; OR

If: NWEEK > 52 ; OR

NWEEK > LWEEK : If:

Then: GO TO STEP 113

Calculate Average Weekly Solar Insolation Step 103

QQSOLA = QQSTOT/FLOAT (NWEEK)

Where: QQSOLA = Average Weekly Solar Radiation Incident on Solar

Array - Watt-Hours/Meter2

Step 104 Calculate Modified PSG Power Output

PPSGL = PPSGAV * QQSOLT(NWEEK)
QQSOLA

PPSGK = PPSGL * QOFF QSOLMX(NWEEK)

Where: PPSGL = Weekly Average PSG power output during battery charging periods - Watts

PPSGK = Weekly Average PSG power output during Share-Mode Operational periods - Watts

Step 105 Calculate Battery Load Profile Power Levels

PBJ = -PFON/ETAD

PGK = - (PFON - PPSGK)/ETAD

PBL = (ETACHG/RATBAT) * (PPSGL - PFOFF)

Where: PBJ = Battery Discharge Power during Solar Occultation periods - Watts

PBK = Battery Discharge Power during Share-Mode Operation periods - Watts

PBL = Battery Charge Power, adjusted to reflect Net gain in discharge energy, during Battery Charging periods - Watts

Step 166 Compare Share-Mode Battery Discharge Power with Reference

<u>If:</u> PBK > 0.0. <u>Then:</u> PBK = 0.0

```
Step 107
           Calculate Battery Energy Profile Levels
            EBX(1) = PBJ * TJL(NWEEK)
            EBX(2) = PBK * TKT(NWEEK)
            EBX(3) = PBL * TLT(NWEEK)
           EBDX(1) = EBX(1)/7.0
           EBDX(2) = EBX(2)/7.0
           EBDX(3) = EBX(3)/7.0
           Where: EBX(I) = Battery Discharge Energy during a particular
                             operational period - Vatt-Hours
                   EBDX(I) = Average Daily Battery Discarge Energy
                          I = 1 = During Solar Occultation periods
                           = 2 = During Share-Mode periods
                           = 3 = During Battery charging periods
Step 108
           Initialize Period Counter
            I = 1
            Compare Period Counter With Reference
Step 109
            If:
                  I > 3,
            Then: GO TO STEP 112
            Calculate Battery Energy State
Step 110
            BSTATE = BSTATE + EBDX(I)
            EBTHMX = AMAX (EBTHMX, BSTATE)
            EBTHMN = AMIN (EBTHMN, BSTATE)
```

Step 111 Increment Period Counter

I = I + 1

RETURN TO STEP 109

Step 112 Increment Weekly Counter

NWEEK = NWEEK + 1

RETURN TO STEP 102

Step 113 Calculate Theoretical Battery Discharge Energy Requirement

EBDTH = ABS (EBTHMX - EBTHMN)

Where: EBDTH = Theoretical Battery Discharge Energy -Watt-Hours

Step 114 Calculate First Criterion for Energy Storage Group Discharge Energy

EESG1 = EBDTH/(1.0 - QBRES)

Where: EESG1 = First Criterion for ESG Discharge

Energy - Watt-Hours

Step 115 Calculate Yearly Battery Mode Reversals

$$NMRT = \sum_{i=1}^{NWEEK} NMR(i)$$

Where: NMRT = Total Yearly Reversals of Battery Operating Mode

Step 116 Calculate Total Mission Battery Cycle Requirements

NCYCLE = FLOAT
$$\left[\left(\frac{52.0 + DURAM}{2.0}\right) + \left(\frac{FLOAT(NMRT)}{FLOAT(NWEEK)}\right)\right] + 1$$

Where: NCYCLE = Battery Charge/Discharge Cycle Requirement

Step 117 Calculate Theoretical Battery Depth-of-Discharge

DOD = DODT { In NCYCLE}

Where: DOD = Theoretical Battery Depth of Discharge

DODT = Input Table of DOD as a function of the natural

logarithm of NCYCLE

Step 118 Compare Theoretical Depth of Discharge With Reference

<u>If:</u> DOD < 0.0, Then: DOD = 0.001

<u>If:</u> DOD > 1.0, <u>Then:</u> DOD = 1.0

Step 119 Calculate Second Criterion for Battery Discharge Energy Requirement

EESG2 = EBDTH/DOD

Where: EESG2 = Second Criterion for ESG Discharge

Energy - Watt-Hours

Step 120 Calculate PSG Maximum Power Output

PPSGMX = MSAPWR - MSAPDP

Where: PPSGMX = PSG Maximum Power Output - Watts

Step 121 Calculate Maximum Battery Charge Power

PBCHMX = ETACHG * (PPSGMX - PFOFF)

Where: PBCHMX = Maximum Power Available for Battery

Charging - Watts

Step 122 Calculate ESG Minimum Temperature TTESMN = TTABMN + DTTESG Where: TTESMN = Minimum Temperature of ESG - °F Calculate Maximum Storage Cell Discharge Voltage Step 123 $VCDMX = F \{BRR(J,K,L),QBB(K),TBB(L)\}$ at: BRR(J,K,L) = -|BRDEST|QBB(K) = 1.0TBB(L) = TTESMNWhere: VCDMX = Maximum Storage Cell Discharge Voltage - VDC Calculate Maximum Storage Cell Charge Voltage Step 124 $VCCMX = F \{BRR(J,K,L),QBB(K),TBB(L)\}$ at: BRR(J,K,L) = BRCESTQBB(K) = 1.0TBB(L) = TTESMNWhere: VCCMX = Maximum Storage Cell Charge Voltage - VDC Step 125 Calculate Maximum Battery Potential Efficiency ETABVX = VCDMX/VCCMXWhere: ETABVX = Maximum Battery Potential Efficiency Calculate Third Criterion for Battery Discharge Energy Requirement Step 126 EESG3 = PBCHMX * ETABVX Where: EESG3 = Third criterion for ESG Discharge Energy - Watt-Hours

Step 127 Calculate Actual Battery Energy Discharge Capability

EESG = AMAX(EESG1, EESG2, EESG3)

Where: EESG = ESG Discharge Energy Capability - Watt-Hours

Step 129 Compare Battery Charger Type With Reference

If: ICHRT > 0, Then: GO TO STEP 133

Step 130 Compare Shunt Limiter Type With Reference

If: ISH > 0, Then: GO TO STEP 132

Step 131 Calculate Maximum Battery Charge Voltage

VBCHMX = VSAOC - 1.0

GO TO STEP 139

Where: VBCHMX = Maximum Battery Charge Voltage - VDC

Step 132 Calculate Maximum Battery Charge Voltage

VBCHMX = VBUS + (0.75) * ((VSAOC - 1.0) - VBUS)

GO TO STEP 139

Step 133 Compare Shunt Limiter Type with Reference

If: ISH > 0, Then: ISH = 0

Step 134 Calculate Battery Charger Reference Voltages

VCHIO = VCHIOT {TTESG} VCHISA = VCHIST {TTESG} at: TTESG = TTESMN

Step 134 (contd)

Where: VCHIO = Battery Charger Input Voltage at Turn-On - VDC

VCHISA = Battery Charger Input Voltage at which charger

changes from "Saturated" to "Active"

operation - VDC

VCHIOT = Input Table of VCHIO as a function of TTESG

VCHIST = Input Table of VCHISA as a function of TTESG

Step 135 Compare Solar Array Open Circuit Voltage With Reference

If: (VSAOC - 1.0) > VCHIO,

Then: GO TO STEP 136

Print Out Error Message:

"VBUS too low to turn-on battery charger"

Return to Main Program and Stop Computer Run

Step 136 Compare Solar Array Open Circuit Voltage With Reference

If: (VSAOC - 1.0) > VCHISA,

Then: GO TO STEP 138

Step 137 Calculate Maximum Battery Charge Voltage

VBCHMX = (VSAOC - 1.0) - VCHIO

GO TO STEP 139

Step 138 Calculate Maximum Battery Charge Voltage

VBCHMX = F {VESA, TTESG}

at: VESA = VSAOC - 1.0

TTESG = TTESMN

Step 138 (contd)

Where: VESA = VCHIT {VCHOOA, TTESG}

VCHOOA = VBCHMX

VESA = Estimate of Battery Charger Input Voltage in

"active" condition - VDC

VCHOOA = Battery Charger Output Voltage, in "active"

condition at zero current - VDC

VCHIT = Input Table of VESA as a function of VCHOOA and

TTESG

Step 139 Calculate Storage Cell Minimum Charge Voltage

 $VCCHMN = F \{BRR(J,K,L),QBB(K),TBB(L)\}$

at: BRR(J,K,L) = 0.0

QBB(K) = 1.0

TBB(L) = TTESMX

Where: VCCHMN = Storage Cell Minimum Charge Voltage - VDC

Step 140 Calculate Maximum Number of Storage Cells in Series

XNCBMX = VBCHMX/VCCHMN

Where: XNCBMX = Estimated Maximum Number of Storage Cells in

Series

Step 141 Calculate Storage Cell Maximum Charge Voltage

 $VCCHMX = F \{BRR(J,K,L),QBB(K),TBB(L)\}$

at: BRR(J,K,L) = 0.0

QBB(K) = 1.0

TBB(L) = TTESMN

Where: VCCHMX = Storage Cell Maximum Charge Voltage - VDC

Step 142 Calculate Minimum Number of Storage Cells in Series

XNCBMN = VBUSMN/VCCHMX

Where: XNCBMN = Estimated Minimum Number of Storage Cells in Series

Step 143 Calculate Estimated Storage Cells in Series

XNCELL = XNCBMN + (FRCELL) * (XNCBMX - XNCBMN)

Where: XNCELL = Estimated Storage Cells in Series

Step 144 Calculate Actual Number of Storage Cells in Series

NCELL = IFIX(XNCELL)

YNCELL = FLOAT(NCELL)

DNCELL = XNCELL - YNCELL

If: DNCELL > 0.5,
Then: NCELL = NCELL + 1

Where: NCELL = Number of Storage Cells in Series in the Battery

Step 145 Initialize Voltage Counter and Battery State-of-Charge

1 = 1

QBS = 0.0

Where: QBS = Dummy Variable used for Battery State-of-Charge

Step 146 Compare Voltage Counter With Reference

If: I > 11,

Then: GO TO STEP 149

Step 147 Calculate Storage Cell Discharge Voltage

 $VCDSTD(I) = F \{BRR(J,K,L),QBB(K),TBB(L)\}$

at: BRR(J,K,L) = -|BRDSTD|

QBB(K) = QBS

TBB(L) = TBDSTD

Where: VCDSTD = Storage Cell Discharge Voltage under Standard Conditions of BRDSTD and TBDSTD - Volts

Step 148 Increment Voltage Counter and Battery State-of-Charge

QBS = QBS + 0.1

I = I + 1

RETURN TO STEP 146

Step 149 Calculate Average Storage Cell Discharge Voltage

 $VCDAVG = \int_{I=1}^{I=11} VCDSTD(I) * (0.1)$ Using Simple Control of the Union of Simple Control of Simpl

Where: VCDAVG = Average Storage Cell Discharge Voltage Under Standard Conditions - VDC

Step 150 Calculate Total ESG Discharge Capacity

CBDSTD = EESG VCDAVG • FLOAT(NCELL)

Where: CBDSTD = Total ESG Discharge Capacity Under Standard Conditions - Amp-Hours

Step 151 Initialize Storage Cell Size Counter

JB = 1

Where: JB = Tabular Location Size of Available Storage Cell

Step 152 Compare Storage Cell Size Counter With Reference

If: JB > 30

Then: GO TO STEP 154

Step 153 Compare Storage Cell Size With Reference

If: CBAVAL(JB) > 0.0,
Then: JB = JB + 1, AND
Then: RETURN TO STEP 152

Step 154 Calculate Maximum Number of Storage Cell Table Entries

JBTOT = JB

Where: JBTOT = Max. No. of Entries in Storage Cell Table

Step 155 Initialize Storage Cell Size Counter

JB = 1

Step 156 Compare Storage Cell Size Counter With Reference

If: JB > JBTOT,

Then: JBMAX = JBTOT, AND Then: GO TO STEP 159

Where: JBMAX = Location of Max. Available Battery Capacity in

Storage Cell Table

Step 157 Compare Maximum Desired Battery Capacity With Reference

If: CBMAX > CBAVAL(JB), Then: JB = JB + 1, AND Then: RETURN TO STEP 156

Step 158 Calculate Location of Maximum Desired Battery Capacity in

Available Storage Cell Table

JBMAX = JB - 1

Step 159 Calculate Estimate of Batteries Required

 $XNBATT = \frac{CBDSTD}{CBAVAL(JBMAX)}$

Where: XNBATT = Estimate of Number of Batteries in Parallel

Step 160 Compare Estimate of Batteries Required With Reference

If: XNBATT > 1.0, Then JBB = JBMAX, AND Then: GO TO STEP 166

Where: JBB = Location of Selected Design Capacity in Storage

Cell Table

Step 161 Initialize Counter

J = 1

Step 162 Compare Counter With Reference And Select Battery Attribute

If: J = JBMAX,

Then: NBATT = 1, AND,
Then: CBDT = CBDSTD, AND,
Then: CBD = CBDT, AND,
Then: GO TO STEP 174

Where: NBATT = Number of Batteries in Parallel

CBDT = Total Discharge Capacity of all batteries - Amp-Hours

CBD * Discharge Capacity of a single battery - Amp-Hours

Step 163 Calculate Location of Selected Battery Design Capacity in Storage Cell Table

JBB = JMAX - J

Step 164 Calculate Estimate of Number of Batteries in Parallel

 $XNBATT = \frac{CBDSTD}{CBAVAL(JBB)}$

Step 165 Compare Estimate of Batteries Required With Reference

If: XNBATT < 1.0

Then: J = J + 1, AND,
Then: RETURN TO STEP 162

Step 166 Compare Estimate of Batteries Required With Reference

If: XNBATT ≤ 10.0 Then: GO TO STEP 172

Step 167 Increment Maximum Desired Battery Capacity Location in Storage Cell Table

JBMAX = JBMAX + 1

Step 168 Compare Maximum Desired Battery Capacity Location With Reference and Select Battery Attributes

If: JBMAX > JBTOT,
Then: NBATT = 10, AND,
Then: CBDT = CBDSTD, AND,

Then: CBD = CBDT/FLOAT(NBATT); AND,

Then: GO TO STEP 174

Step 169 Calculate Location of Selected Battery Design Capacity in Storage Cell Table Lie:

JBB = JBMAX

Step 170 Calculate Estimate of Number of Batteries in Parallel

XNBATT = CBDSTD/CBAVAL(JBB)

Step 171 Compare Estimate of Batteries Required With Reference

If: XNBATT > 10.0, Then: RETURN TO STEP 167 Step 172 Calculate Actual Number of Batteries in Parallel

NBATT = IFIX(XNBATT)

YNBATT = FLOAT(NBATT)

DNBATT = XNBATT - YNBATT

<u>If:</u> DNBATT > 0.5. <u>Then:</u> NBATT = NBATT + 1

Step 173 Calculate Battery and ESG Storage Capacity

CBD = CBAVAL(JBB)

CBDT = CBD * FLOAT(NBATT)

Step 174 Calculate Maximum Allowable Battery Charging Current

EBDA = CBDT * VCDAVG * FLOAT(NCELL)

DODA = EBDTH/EBDA

YICHMX = CBDT * BRCHMX

ZICHMX = YICHMX/FLOAT(NBATT)

Where: EBDA = Total Battery Energy Watt-Hours

DODA = Maximum Battery Depth-of-Discharge

YICHMX = Maximum Allowable Battery Charging Current for

the ESG - Amperes

ZICHMX = Maximum Allowable Charging Current for Single

Battery - Amperes

Step 175 Calculate Battery Weight

DWDE = DWDET (CBD)

EBTOT = CBDT * VCDAVE * FLOAT (NCELL)

WBATT = DWDE * EBTOT

Where: DWDE = Battery Specific Weight - lbs/Watt-Hour

EBTOT = Total Battery Energy in ESG - Watt-Hours

WBATT = Battery Weight - Lbs

DWDET = Input Table of DWDE as a function of CBD

Step 176 Calculate Battery Cost

DCDE = DCDET {CBD, NBATP}

CBATT = DCDE * EBTOT

Where: DCDE = Battery Specific Cost - \$/Watt-Hour

NBATP = Total Number of Batteries to be procured

CBATT = Battery Cost - \$

DCDET = Inguit table of DCDE as a function of CBD and NBATP

Step 177 Compare Battery Charger Type With Reference

If: ICHRT = 0,

Then: PCHO = 0.0, AND,
Then: WCHG = 0.0, AND,
Then: CCHG = 0.0, AND,
Then: GO TO STEP 181

Where: PCHO = Maximum Load for a Single Battery Charger - Watts

WCHG = Weight of all chargers - Lbs

CCHG = Cost of all chargers - \$

Step 178 Calculate Single Charger Maximum Load

PCHO = PBCHMX/FLOAT(NBATT)

Step 179 Calculate Battery Charger Weight

DWDCH = DWDCHT {PCHO}

WCHG = DWDCH * PCHO * FLOAT(NBATT)

Where: DWDCH = Battery Charger Specific Weight - Lb/Watt

DWDCHT = Input Table of DWDCH as a function of PCHO

Step 180 Calculate Battery Charger Cost

DCDCH = DCDCHT {PCHO, NCHGP}

at: NCHGP = NBATP

Where: NCAGP = Number of Battery Chargers Procured

DCDCH = Battery Charger Specific Cost - \$/Watt

DCDCHT = Input Table of DCDCH as a Function of PCHO

and NCHGP

Step 181 Compare Shunt Limiter Type With Reference

If: ISH = 0,

Then: WSL = 0.0, AND, Then: CSL = 0.0, AND, Then: GO TO STEP 215

Where: WSL = Total Weight of Shunt Limiters - Lbs

CSL = Total Cost of Shunt Limiters - \$

Step 182 Calculate Shunt Limiter Operating Point

VSLOP = VBCHMX

 $XISLOP = F \{I2(L), V2(L)\}$

at: V2(L) = VSLOP

Where: VSLOP = Shunt Limiter Operating Point Voltage - VDC

XISLOP = Shunt Limiter Operating Point Current - Amperes

Step 183 Compare Shunt Limiter Type With Reference

If: ISH > 2,

Then: GO TO STEP 208

Step 184 Calculate Power Source Group Type

IPSG = 1

Where: IPSG = Power Source Group Type

0 = One Shunt Limiter for the Solar Array

1 = One Shunt Limiter for each electrical section of

the solar array

Step 185 Calculate Zener Diode Reference Power Level

PZRF25 = HDER * HDZMX

Where: PZRF25 = Single Zener Diode Reference Power Level at

25°C - Watts

Step 166 Calculate Estimate of Zener Diodes in a Single String

XNZS = PPSGMX/(PZRF25 * FLOAT(NESP))

Where XNZS = Estimate of Zener Diodes in a Single String

Calculate Actual No. of Zener Diodes in a Single String Step 187 NZS = IFIX(XNZS)YNZS = FLOAT(NZS)DNZS = XNZS - YNZS DNZS \geq 0.5, Then: NZS = NZS + 1 If: NZS < 1 $\overline{\text{Then}} : \quad \text{NZS} = 1$ Step 188 Calculate Zener Diode Operating Temperature TCZ = TSACMN Where: TCZ = Zener Diode Operating Temperature - °C Step 189 Calculate Single Zener Diode Operating Point VZOP = VSLOP/FLOAT(NZS) XIZOP = XISLOP/FLOAT(NESP) Where: VZOP = Zener Diode Operating Point Voltage - VDC XIZOP = Zener Diode Operating Point Current - Amperes Compare Shunt Limiter Type With Reference Step 190 If: ISH > 1, Then: GO TO STEP 201 Initialize Zener Diode Voltage Counter Step 191 LZ = 1Step 192 Initialize Zener Diode Breakdown Reference Voltage VZB30 = VZOPWhere: VZB30 = Zener Diode Breakdown Voltage at 30°C - VDC

Step 193 Compare Zener Diode Voltage Counter With Reference

If: LZ > 25

Then: VZBR = VZB, AND, Then: GO TO STEP 205

Where: VZBR = Single Zener Diode Breakdown Voltage -VDC (at

Operating Temperatures)

VZB = Estimate of Zener Diode Breakdown Voltage - VDC

Step 194 Calculate Zener Diode Temperature Coefficient

 $TCO = ZTCOEF \{VZB30\}$

Where: TCO = Zener Diode Temperature Coefficient - (%/°C)

ZTCOEF = Input Table of TCO as a function of VZB30

Step 195 Calculate Zener Diode Dynamic Impedance

 $ZZ = ZDIMP \{TCZ, VZB30\}$

Where: ZZ = Zener Diode Impedance - Ohms

ZDIMP = Input Table of ZZ as function of TCZ and VZB30

Step 196 Calculate Estimate of Zener Diode Breakdown Voltage

VZB = VZOP - (XIZOP * ZZ)

Step 197 Calculate Estimate of Reference Temperature Zener Breakdown

Voltage

 $VZB301 = VZB * \left[1.0 - \frac{TCO * (TCZ - 30.0)}{100.0} \right]$

Where: VZB301 = Estimate of Zener Diode Breakdown Voltage at 30°C - VDC

Step 198 Calculate Breakdown Voltage Residual

 $DVZB = ABS \left(\frac{VZB301 - VZB30}{VZB30} \right)$

Where: DVZB = Residual in Estimate of Zener Diode Breakdown Voltage at 30°C - VDC

Step 199 Compare Breakdown Voltage Residual With Reference

<u>If:</u> DVZB < 0.01, <u>Then:</u> VZBR = VZB, <u>AND</u>, <u>Then:</u> GO TO STEP 205

Step 200 Increment Zener Diode Voltage Counter and Adjust Reference Breakdown Voltage

LZ = LZ + 1

VZB30 = VZB301

RETURN TO STEP 193

Step 201 Calculate Temperature Compensated (TC) Zener Reference Current

IZRF25 = CURZ (HDZMX)

Where: IZRF25 = Zener Diode Reference Current at 25°C - Amperes

CURZ = Input Table of IZRF25 as a function of HDZMX

Step 202 Calculate TC Zener Reference Voltage

VZRF25 = PZRF25/IZRF25

Where: VZRF25 = TC Zener Reference Voltage at 25°C - VDC

Step 203 Calculate TC Zener Breakdown Voltage Ratio

RATVB = F {TCZ, RATI}

at: RATI = 0.0

RATI = TCZIV {RATV, TCZ}

Where: RATV = Zener Diode Voltage Ratio

RATI = Zener Diode Current Ratio

TCZIV = Input Table of RATI as a function of RATV and TCZ

RATVB = Zener Breakdown Voltage Ratio

Step 204 Calculate TC Zener Breakdown Voltage

VZBR = RATVB * VRF25

Step 205 Calculate Zener Diode Temperature at Breakdown

TZBR = TCZ

Where: TZBR = Zener Diode Temperature at Breakdown Voltage - °C

Step 206 Calculate Total Weight of Shunt Limiter

DWDNZ = DWDNZT (PRF25, ISH)

NZTOT = NZS * NESP

WSL = DWDNZ * FLOAT(NZTOT)

Where: DWDNZ = Zener Diode Specific Weight - Lbs/Zener

NZTOT = Total Number of Zener Diodes

DWDNZT = Input Table of DWDNZ as a function of PRF25 and ISH

Step 207 Calculate Total Cost of Shunt Limiter

NZTP = NZTOT * NSAP

DCDNZ = DCDNZT {PRF25, NZTP, ISH}

CSL = DCDNZ * FLOAT(NZTOT)

Where: NZTP = Total No. of Zener Diodes Procured

DCDNZ = Zener Diode Specific Cost - \$/Zener

DCDNZT = Input Table of DCDNZ as a function of PRF25,

NZTP and ISH

GO TO STEP 215

Step 208 Calculate Power Source Group Type

IPSG = 0

Step 209 Calculate Shunt Limiter Reference Temperature

TSHREF = TSACMN

Where: TSHREF = Shunt Limiter Reference Temperature

Step 210 Calculate Active Shunt Limiter Impedance

ZSH = ZSHTAB (TSH)

at: TSH = TSHREF

Where: ZSH = Active Shunt Limiter Dynamic Impedance - Ohms

ZSHTAB = Input Table of ZSH as a function of TSH

Step 211 Calculate Active Shunt Limiter Turn-On Voltage

VSHTOR = VSLOP - XISLOP * ZSH

Where: VSHTOR = Shunt Limiter Turn-on Voltage - VDC at TSHREF

Step 212 Calculate Active Shunt Limiter Load

PSL = PPSGMX

Where: PSL = Active Shunt Limiter Load - Watts

Step 213 Calculate Shunt Limiter Weight

DWDPS = DWDPST {PSL}

WSL = DWDPS * PSL

Where: DWDPS = Shunt Limiter Specific Weight - Lbs/Watt

Step 214 Calculate Total Cost of Shunt Limiter

NSLP = NSAP

DCDPS = DCDPST {PSL,NSLP}

CSL = DEDPS * PSL

Where: NSLP = No. of Active Shunt Limiters Procured

DCDPS = Active Shunt Limiter Specific Cost - \$/Watt

DCDPST = Input Table of DCDPS as a function of PSL and NSLP

Step 215 Calculate Total Power System Weight

WPWR = WSA + WBATT + WCHG + WSL

Where: WPWR = Total Power System Weight - 1bs

Step 216 Calculate Total Power System Cost

CPWR = CSA + CBATT + CCHG + CSL

Where: CPWR = Total Power System Cost - \$

Step 217 Print Design Synthesis Output Information Step 218 Set Performance Analysis Battery Parameters CB = CBDXN = FLOAT(NCELL)XICHMX = ZICHMXRETURN TO MAIN PROGRAM

3.1 Terminator Characteristics

The Terminator Characteristics routine is used to calculate the sunrise and sunset times for a specific day of the year. The equations use solar vector location angles, time zone number, and buoy latitude and longitude to determine terminator hour angles and times.

PROGRAM ALGORITHMS

Step 1 Obtain Exact Date DATE = Date; Days from the start of the year (1,365) Step 2 Calculate Solar Vector Location in Equatorial Plane ALPHEQ = OMEGA * DATE Where: ALPHEQ = Solar Vector Location - Radians $OMEGA = (2 * \pi)/365.242$ $\pi = 3.14159$ Note: There are 365.242 days per tropical year as measured from Vernal Equinox to Vernal Equinox Step 3 Calculate Solar Radiation Variables VAR(I) = FAO(I) + FAI(I) + COS(ALPHEQ) + ...+ FA2(I) * COS(2.0 * ALPHEQ) + ... + FA3(I) * COS(3.0 * ALPHEQ) + ... + FB1(I) * SIN(ALPHEQ) + ... + FB2(I) * SIN(2.0 * ALPHEQ) + ... + FB3(1) * SIN(3.0 * ALPHEQ) $DECL = VAR(1) * \pi/180.0$ ET = VAR(2)Where: DECL = Solar Declination Angle - Radians ET = Equation of Time Difference - Hours FA, FB = Fourier Coefficients obtained from input data tables "Solar Radiation Fourier

Coefficients"

Step 3a Calculate Solar Radiation Variables

IF: ITAPE = 0.

THEN: APPSC = VAR(3) * 3.1524808, and,

THEN: ATMEXC = VAR(4), and,

THEN: SDF = VAR(5)

Where: APPSC = Apparent Solar Constant - Watts/Meter²

(at AMO)

ATMEXC = Atmospheric Extinction Coefficient - Air Mass⁻¹

SDF = Sky Diffuse Factor

Step 4 Obtain Buoy Latitude

THELAD = Buoy latitude - degrees {+ North}

Step 5 Convert Buoy Latitude

THETLA = THELAD * $\pi/180.0$

Where: THETLA = Buoy Latitude - Radians

Step 6 Calculate Terminator Hour Angle

IF: [THETLA \geq ($\pi/2.0$) - DECL], THEN: HOURT = π , AND, Go to Step 7

HOURT = ARCCOS (-1.0 * TAN (THETLA) * TAN (DECL))

Where: HOURT = Terminator Hour Angle - Radians

Step 7 Convert Terminator Hour Angle

HOURA = HOURT * $12.0/\pi$

Where: HOURA = Terminator Hour Angle - Hours

Step 6 Obtain Buoy Location Time Zone Number

TZN = Time Zone Number (Hours behind Greenwich Mean Time)

Step 9 Obtain Buoy Longitude

THELOD = Buoy Longitude - degrees { + West - East

Step 10 Calculate Time of Sunrise and Sunset at Buoy Location

SRT = 12.0 - HOURA - ET - TZN + (THELOD/15.0)

SST = 24.0 - SRT

Where: SRT = Sunrise Time - Hours

SST = Sunset Time - Hours

RETURN TO DESIGN SYNTHESIS DRIVER ROUTINE

3.2 Clear Day Solar Insolation

The Clear Day Solar Insolation routine is used to compute the intensity of solar radiation incident on the buoy solar array for a particular day and time. The insolation is calculated for a clear day (i.e., no cloud cover) using solar array tilt angles, buoy location hour angles, sky diffuse factor, clearness numbers, and surface reflectivity.

PROGRAM ALGORITHMS

Step 1 Obtain Geometrical and Temporal Information

TIMEH = Daily Time - Hours after Midnight - (0,24)

TZN = Buoy Location Time Zone Number - (Hours behind Grennwich Mean Time)

THELOD = Buoy Longitude - Degrees {+ West - East

HOURT = Terminator Hour Angle - Radians

DECL = Solar Declination Angle - Radians

THETLA = Buoy Latitude - Radians {+ North - South

Step 2 Calculate Buoy Location Hour Angle

BHOURD = 15.0 * (TIMEH - 12.0 + TZN + ET) - THELOD

BHOUR = BHOURD * $\pi/180.0$

Where: BHOURD = Buoy Location Hour Angle - Degrees

BHOUR = Buoy Location Hour Angle - Radians

Step 3 Compare Buoy Location Hour Angle With Terminator Hour Angle (Test for Solar Occulation)

IF: ASB(BHOUR) > ABS(HOURT)

THEN: GO TO STEP 23

```
Step 4
            Calculate Direction Cosines of Direct Solar Radiation
            COS(THETZS) = COS(BHOUR) * COS(DECL) * COS(THETLA) + ....
                            .... + SIN(DECL) * SIN(THETLA)
               COS(THW) = COS(DECL) * SIN(BHOUR)
                    COS(BHOUR) > \left\{ \frac{TAN(DECL)}{TAN(THETLA)} \right\},
            IF:
            THEN: KS = 1.0
                   COS(BHOUR) < \left\{ \frac{TAN(DECL)}{TAN(THETLA)} \right\}
            IF:
            THEN: KS = -1.0
            \cos(\text{THS}) = KS^* \left\{ [1-\cos(\text{THETZS})]^2 - [\cos(\text{THE})]^2 \right\}^{0.5}
            Where: THETZS = Angle between the local zenith and the solar
                               Vector - Radians
                   THW, THS = Additional Direction Angles - Radians
Step 5
            Calculate Solar Altitude
            SALT = ARCSIN(COS(THETZS))
            Where: SALT = Solar Altitude (Angle between the solar vector and
                            the Horizontal, i.e., Earth's surface) - Radians
Step 6
            Calculate Solar Azimuth
                   COS(THS) > 0
            IF:
            THEN: SAZM = ARCSIN(COS(THW)/COS(SALT)), AND GO TO STEP 7
                   COS(THS) < 0,
            THEN: SAZM = \pi - ARCSIN(COS(THW)/COS(SALT))
            Where: SAZM = Solar Azimuth (Angle between the Solar Vector
                            Projected onto the Horizontal Surface and the
                            South-Pointing Vector on the Horizontal
                            Surface) - Radians
            Obtain Clearness Number
Step 7
            CN = Clearness Number
               = 0.7-9.9 for an industrial atmosphere
               = 0.85-1.10 for non-industrial atmospheres
```

Step 8 Obtain Solar Radiation Variables

APPSC = Apparent Solar Constant at AMO - Watts/Meter²

ATMEXC = Atmosphere Extinction Coefficient - Air Mass

SDF = Sky Diffuse Factor

Step 9 Calculate Intensity of Direct Normal Solar Radiation

QDN = APPSC * CN * EXP(-ATMEXC/COS(THETZS))

Where: QDN = Direct Normal Solar Radiation Intensity - Watts/ Meter²

Step JO Obtain Solar Array Pointing Angles

PHIAID = Surface Tilt Angle from Horizontal - Degrees
(Angle between local Zenith and Solar Array Normal)

PHIAAD = Surface Azimuth Angle from South - Degrees
(Angle between South pointing vector and projection of array normal on horizontal surface)

{+ if West of South}
- if East of South

Step 11 Convert Solar Array Pointing Angles

PHIAI = PHIAID * $\pi/180.0$

PHIAA = PHIAAD * $\pi/180.0$

Wher : PHIAI = Surface Tilt Angle - Radians

PHIAA = Surface Azimuth Angle - Radians

Step 12 Calculate Direction Cosines of Array Normal

(Reference Axis: Vertical, Horizontal to West, Horizontal to South)

ETAA = COS(PHIAI)

ETAB = SIN(PHIAA) * SIN(PHIAI)

ETAC = COS(PHIAA) * SIN(PHIAI)

Where: ETAA, ETAB, ETAC are Array Normal Direction Cosines

Step 13 Calculate Solar Array Tilt Angle COS(TILT) = ETAA * COS(THETZS) + ... + ETAB * COS(THW) + ... + ETAC * COS(THS) Where: TILT = Solar Array Tilt Angle - Radians (Angle between Solar Vector and Solar Array Normal) Step 14 Calculate Intensity of Direct Solar Radiation Incident on the Solar Array IF: COS(TILT) > 0.0, THEN: QD = QDN * COS(TILT) $COS(TILT) \leq 0.0$, IF: THEN: QD = 0.0Where: QD = Direct Solar Radiation Incident on Solar Array -Watts/Meter2 Step 15 Calculate Sky Brightness BS = SDF * QDN/(CN ** 2.0)Where: BS = Sky Brightness - Watts/Meter² Step 16 Obtain Horizontal Surface (Ground/Ocean) Reflectivity REFLH = Horizontal Surface Reflectivity for Solar Radiation Step 17 Calculate Horizontal Surface Brightness BG = REFLH * (BS + QDN * COS(THETZS)) Where: BG = Horizontal Surface Brightness - Watts/Meter² Step 18 Calculate Intensity of Horizontal Surface Diffuse Radiation Incident on Solar Array QDG = BG * ((1 - ETAA)/2.0)Where: QDG = Horisontal Surface Diffuse Radiation Incident on Solar Array - Watts/Meter²

Step 19 Calculate Intensity of Sky Diffuse Radiation Incident on a Horizontal Solar Array

QDSH = QDN * SDF

Where: QDSH = Sky Diffuse Radiation Incident on a Horizontal Solar Array - Watts/Meter²

Step 20 Calculate Intensity of Sky Diffuse Radiation Incident on a Vertical Solar Array

YV = 0.45

 $\underline{\text{IF}}$: COS(TILT) > (-0.20),

THEN: YV = 0.55 + 0.437 * COS(TILT) + 0.313 * (COS(TILT)**2.0)

QDSV = QDN * (SDF * YV + (REFLH * (SDF + COS(THETZS)))/2.0)

Where: QDSV = Sky Diffuse Radiation Incident on a Vertical Solar Array - Watts/Meter²

Step 21 Calculate Intensity of Sky Diffuse Radiation Incident on Solar Array

QDS = QDSV + (QDSH - QDSV) * COS(SALT)

Where: QDS = Sky Diffuse Radiation Incident on Solar Array - Watts/Meter²

Step 22 Calculate Intensity of Total Clear Day Solar Insolation Incident on Solar Array

QDTC = QD + QDG + QDS

Where: QDTC = Total Clear Day Solar Radiation Incident on Solar Array - Watts/Meter²

Return to Design Synthesis Driver Routine

Step 23 Calculate Occultation Conditions for Solar Insolation

QDN = 0.0

QD = 0.0

QDG = 0.0

QDS = 0.0

QDTC = 0.0

Return to Design Synthesis Driver Routine

3.3 Solar Array Electrical Characteristics

The Solar Array Electrical Section is made up of the solar array, the solar array isolation diodes, and the power source series resistance. The characteristics of these elements are calculated for the environmental conditions in which the subsystem will operate and are then combined into a single solar array current-voltage curve. Performance data are stored for a single solar cell, for an isolation diode, and for the series resistance that is typical of those in the buoy solar array. The data are projected from the component level into the electrical configuration determined by the Design Synthesis driver program. Equations are also included to estimate performance when the array is misoriented from the sun vector and to estimate performance degradation due to cloud cover, temperature extremes, and environmental effects.

PROGRAM ALGORITHMS

Step 1 Obtain Elapsed Time From Start of Mission

DATEM = Elapsed time from start of mission - days

Step 2 Obtain Current Degradation Factors for Solar Array

CDEGA = Solar Array Current Degradation Factor Due to Fabrication Losses - Percent (from zero)

CDEGB = Solar Array Current Degradation Factor Due to Terrestrial Performance Extrapolation Uncertainty -Percent (from zero)

Step 3 Calculate Current Degradation Factor Due to Environmental Effects

CDEGC = SADEGC(DATEM)

Where: CDEGC = Solar Array Current Degradation Factor Due to Environmental Effects - Percent (from zero)

SADEGC = Table of Solar Array Input Current Degradation
Due to the Environment (in Percent from zero)
as a Function of DATEM

Step 4 Calculate Solar Array Current Degradation Factor

 $CDEG = \frac{1.0 * 10^6 - (100.0 - CDEGA) * (100.0 - CDEGB) * (100.0 - CDEGC)}{1.0 * 10^6}$

Where: CDEG = Solar Array Current Degradation Factor - Dimensionless

Step 5 Obtain Voltage Degradation Factor for Solar Array

VDEGA = Solar Array open circuit voltage degradation due to temperature uncertainty - Percent (from zero)

Step 6 Calculate Voltage Degradation Factor Due to Environmental Effects

VDEGB = SADEGV(DATEM)

Where: VDEGB = Solar Array Open Circuit Voltage Degradation Factor due to Environmental Effects -Percent (from zero)

SADEGV = Table of Solar Array Open Circuit Voltage
Degradation due to the Environment (in percent
from zero) as a function of DATEM

Step 7 Calculate Solar Array Voltage Degradation Factor

 $VDEG = \frac{1.0 * 10^{\frac{1}{4}} - (100.0 - VDEGA) * (100.0 - VDEGB)}{1.0 * 10^{\frac{1}{4}}}$

Where: VDEG = Solar Array Voltage Degradation Factor - Dimensionless

Step 8 Obtain Solar Cell Spectral Correction Factor

SPECOR = Solar Cell Spectral Correction Factor - Deminsionless (Corrects for differences between Spectrum of Solar Radiation Incident on Solar Cell and Spectral Response of Solar Cell)

Step 9 Obtain Total Solar Radiation

QDT = Total Solar Radiation Incident on Solar Array - Watts/Meter²

Step 10 Calculate Effective Solar Insolation

X = SPECOR * QDT/10.0

Where: X = Effective Solar Insolation Incident on Solar Cell - Milliwatts/cm²

Step 11 Calculate Modified Solar Insolation

XX = X * (1.0 - CDEG)

Where: $XX = Modified Solar Insolation - mw/cm^2$

Step 12 Obtain Single Solar Cell Area

ACELL = Single Solar Cell Area - cm2

Step 13 Obtain Solar Array Temperature

TSAC = Solar Array Temperature - °C

Step 14 Calculate Short Circuit Current Temperature Coefficient for a Single Solar Cell

ALPHAC = $(7.428 * 10^{-7} - (1.83 * 10^{-9}) * TSAC * (XX) * ACELL/4.0$

Where: ALPHAC = Short Circuit Current Temperature Coefficient - Amperes/°C-cell

Step 15 Calculate Solar Cell Series Resistance

RCELLC = F[RSCELL, TEMTAB] at TEMTAB = TSAC

Where: RCELLC = Solar Cell Series Resistance - Ohms (at Temperature TSAC)

RSCELL = Internal Table of Solar Cell Series Resistance as a function of Cell Temperature

TEMTAB = Internal Table of Temperature Range Associated with RSCELL

Step 16 Calculate Solar Cell I-V Curve Correction Factor

ROCELL = F[ROE, SUNLIT] at SUNLIT = XX

Where: ROCELL = Solar Cell I-V Curve Correction factor at Solar Insolation Level: XX

ROE = Internal Table of So'ar Cell I-V Curve Correction Factor as a Function of Solar Insolation

SUNLIT = Internal Table of Solar Insolation Range Associated with ROE

Step 17 Calculate Open Circuit Voltage Temperature Coefficient for a Single Solar Cell

BETAA = F [BETAB(or BETAC or BETAD)] at XX and TSAC
BBETA = BETAA/1000.0

Where:

BBETA = Open Circuit Voltage Temperature Coefficient - (Volts/°C) at XX and TSAC

BETAA = Open Circuit Voltage Temperature Coefficient - (mv/°C) at XX and TSAC

BETAB, BETAC, BETAD = Internal Tables of Solar Cell Open Circuit Voltage As a Function of Solar Insolation and Cell Temperatures

SUNMW, SONMW, SENMW = Internal Tables of Solar Insolation Ranges Associated with (BETA) Tables

BTEMP, CTEMP, DTEMP = Internal Tables of Solar Cell
Temperature Ranges Associated with
(BETA) Tables

Internal Tables BTEMP, SUNMW AND BETAB used when:

 $(100 \le XX \le 540 \text{ mw/cm}^2)$ and $(-60 \le \text{TSAC} \le 160^{\circ}\text{C})$

Internal Tables CTEMP, SONMW, BETAC used when:

 $(5 \le XX \le 253 \text{ mw/cm}^2)$ and $(-40 \le TSAC \le 60^{\circ}C)$

Internal Tables DTEMP, SENMW, BETAD used when:

 $(5 \le XX \le 100 \text{ mw/cm}^2)$ and $(-140 \le TSAC \le -40^{\circ}C)$

Step 18 Obtain Single Cell ISC, VOC Data

IISC = Solar Cell Short Circuit Current - Amperes/cell (at 145 mw/cm² Solar Insolation and 60°C)

VVOC = Solar Cell Open Circuit Voltage - Volts/cell (at 145 mw/cm² Solar Insolation and 60°C)

Step 19 Calculate ISC, VOC Shift Due to Degradation

C1 = CDEG * IISC

C2 = VDEG * VVOC

Where: Cl = Solar Cell Short Circuit Current Shift - Amps/cell

C2 = Solar Cell Open Circuit Voltage Shift - Volts/cell

Step 20 Obtain Single Circuit (of Solar Cells) Arrangement

NS = No of Solar Cells in Series in Each Circuit

NP = No of Solar Cells in Parallel in Each Circuit

Step 21 Calculate Cell Electrical Circuit Parameters

ALPHA = ALPHAC * NP

BETA = BBETA * NS

RCELL = (0.114 + RCELLC) * NS/NP

RHO = ROCELL * NS/NP

Where: ALPHA = Short Circuit Current Temperature
Coefficient for a Single Circuit Amperes/°C-circuit

BETA = Open Circuit Voltage Temperature Coefficient for a Single Circuit -Volts/°C

RCELL = Single Circuit Series Resistance - Ohms

RHO = Series Resistance Temperature Correction Factor

Step 22 Calculate Modified Electrical Circuit Short Circuit Current

ISC = IISC * NP * (1.0 - CDEG)

Where: ISC = Modified Electrical Circuit Short Circuit
Current - Amperes/circuit

Step 23 Calculate Short Circuit Current Difference (for an Electrical Circuit)

DISC = ISC * ((X/145.0) - 1.0) + ALPHA * (TSAC - 60.0)

Where: DISC = Short Circuit Current Difference due to current degradation, solar insolation changes and tempature changes - Amperes/circuit

Step 24 Calculate Electrical Circuit Voltage and Series Resistance Correction Factors

C3 = BETA * (TSAC - 60.0) + DISC * RCELL

C4 = RHO * (TSAC - 60.0)

Where: C3 = Electrical Circuit Voltage Correction Factor - Volts/circuit

C4 = Electrical Circuit Series Resistance Correction Factor - Ohms

Step 25 Obtain Reference Solar Cell Current-Voltage Characteristics

IJ(J) = Reference Solar Cell Current Data point Amperes
Internal

VV(J) = Reference Solar Cell Voltage Data point - Tables
Volta

Where: J = 1.30

Step 26 Calculate Solar Cell Electrical Circuit Current-Voltage Characteristics

I(J) = NP * (II(J) - C1) + DISC

V(J) = NS + (VV(J) - C2) - C3 - (C4 + I(J))

Step 26 (contd)

Where: J = 1,30

I(J) = Electrical Circuit Current - Amperes at the given level of V(J)

V(J) = Electrical Circuit Voltage - Volts

Step 27 Obtain Solar Array Voltage Increment

VSAINC = Solar Array Voltage Increment - volts

- Step 28 Redefine Electrical Circuit Current Voltage Array in Selected Voltage Increments as follows:
 - a) Set: Counter L = 1 and voltage V2(L) = 0.0
 - b) Establish: Current I1(L) at V2(L)
 - $Il(L) = F \{I(J), V(J)\} \text{ at } V(J) = V2(L)$
 - c) Increment: Counter L = L + 1 and voltage V2(L + 1) = V2(L) + VSAINC and Establish: Current I1(L + 1) at V2(L + 1),

Until: $I1(L + 1) \leq 0.0$

d) Redefine: Last V2(L) at I1(L) = 0.0

 $V2(L) = F \{I(J), V(J)\} \text{ at } I(J) = 0.0$

- e) Set: Current-Voltage Matrix Dimension to last counter value: MFINAL = L
- Step 29 Obtain Number of Solar Cell Electrical Circuits in Solar Array

Step 30 Calculate Solar Array Current-Voltage Characteristics

I2(L) = (I1(L) * NESP) at V2(L)

L = 1, MFINAL

Where: Il(L) = Electrical Circuit Current - Amperes at V2(L)

I2(L) = Solar Array Current - Amperes at V2(L)

V2(L) = Circuit or Array Voltage - Volts

Step 31 Obtain Voltage Data for Calculation of Solar Array Maximum Power Point

XV = Initial Voltage for Max Power Point Calculations - Volts

DXN = Voltage Increment for Maximum Power Point Calculation - Volts

Step 32 Initialize Calculation Value of Solar Array Maximum Power

MSAPWR = 0.0

Where: MSAPWR = Solar Array Maximum Power - Watts

Step 33 Calculate Solar Array Power and Current

 $XI = F \{12(L), V2(L)\} \text{ at } V2(L) = XV$

SAPWR = XI * XV

Where: XV = Solar Array Voltage - Volts

XI = Solar Array Current - Amperes

SAPWR = Solar Array Power - Watts

Step 34 Compare Solar Array Power With Maximum Power

IF: SAPWR > MSAPWR THEN: MSAPWR = SAPWR

XV = XV + DXV

Repeat Step 33 until: SAPWR < MSAPWR

Step 35 Recalculate Solar Array Current and Power

MSAPWR = 0.0

XV = XV - DXV

REPEAT STEP 33 ONLY

Step 36 Compare Solar Array Power With Maximum Power

> IF: - SAPWR > MSAPWR, THEN: MSAPWR = SAPWR

> > DXV = DXV/10.0

XA = XA + DXA

REPEAT STEP 33 ONLY UNTIL: SAPWR < MSAPWR

Calculate Solar Array Maximum Power Point Characteristics Step 37

MAXV = XV - DXV

MAXI = MSAPWR/MAXV

Where: MAXV = Solar Array Voltage at Max Power Point - Volts

MAXI = Solar Array Current at Maximum Power Point -

Amperes

RETURN TO DESIGN SYNTHESIS DRIVER ROUTINE

3.4 Power Conditioning and Distribution Group

The Power Conditioning and Distribution Group is made up of the lamp flasher and the housekeeping regulator. The characteristics of these two subassemblies are computed as a function of the selected lamp flasher pattern and the lamp flasher condition (on, off, or flashing). These characteristics are then shifted for the combined effects of wiring and connector series resistance to give a single set of current-voltage curves at the unregulated bus.

PROGRAM ALGORITHMS

Step 1 Obtain Flasher Pattern Type

IF: 1FTYPE = 0. THEN: GO TO STEP 3

Where: IFTYPE is the type of flasher pattern

= 0: Non-Standard Pattern
> 0: Standard Pattern

Step 2 Calculate Standard Flasher Pattern

 $TL1(J) = TLO \{IFTYPE, J\}$

(1 ≤ IFTYPE ≤ 15) (1 ≤ J ≤ 16)

15 standard pattern types Up to 16 steps per pattern Alternate On/Off steps

GO TO STEP 4

Where: TLO is an input table containing TL1 as a function of IFTYPE and J

TL1 = Selected Lamp Flasher Pattern

Step 3 Calculate Non-Standard Flasher Pattern

TL1(J) = TLL1(J) $(1 \le J \le 16)$

Where: TLL1(J) is the input data containing up to 16 alternate on-off steps for the Non-Standard Flasher Pattern

Step 4 Calculate Total Duration of Lamp Illumination and Lamp Shut-Off

TLON =
$$\sum_{J=1,3,5...}^{15} [TL1(J)]$$

TLOFF =
$$\sum_{J=2,4,6,...}^{16} [TL1(J)]$$

Where: TLON = Total duration of lamp illumination

in a single flasher period

TLOFF = Total duration of lamp shut-off

IF: TLON ≤ 0, and; TLOFF ≤ 0
THEN: Stop program and

Print: "No flasher pattern entries"

Step 5 Calculate Lamp Duty Cycle

DL = TLON/(TLON + TLOFF)

Where: Di = Lamp Duty Cycle

Step 6 Obtain Lamp Characteristics

VLR = Lamp Voltage Rating - VDC

ILR = Lamp Current Rating - Amperes

CLS = Cold-Filament Lamp Surge Coefficient

Step 7 Calculate Actual Lamp Current

IL = CLS * ILR

Where: IL = Actual Lamp Current - Amperes

Note: If DL = 1.0 then CLS = 1.0

If DL < 1.0 then CLS > 1.0

Step 8 Calculate Actual Lamp Resistance

 $RL = \frac{VLR}{IL}$

Where: RL = Actual Lamp Resistance - Ohms

Step 9 Calculate Average Lamp Current

IL = IL * DL

Where: IL = Average Lamp Current - Amperes

Step 10 Calculato Effective Lamp Resistance

 $\overline{RL} = VLR/(\overline{IL})$

Where: RL = Effective Lamp Resistance - Ohms

Step 11 Obtain Raw Power Bus Voltage Limits and User Load Cable Resistance

VMINIV = Minimum Raw Power Bus Voltage - VDC

VMAXIV = Maximum Raw Power Bus Voltage - VDC

RLL = User Load Cable Resistance - Ohms

Step 12 Calculate PCD Group Voltage Increment

VINCIV = (VMAXIV - VMINIV)/50.0

Where: VINCIV = PCD Group Voltage Increment - VDC

Step 13 Obtain PCD Equipment Temperature Characteristics

TTAMB = Ambient Temperature - °F

DTTPCD = PCD Equipment Temperature Rise - °F

Step 14 Calculate PCD Equipment Temperature TTPCD = TTAMB + DTTPCD Where: TTPCD = PCD Equipment Temperature - °F Step 15 Compare Raw Power Bus Minimum Voltage With Reference VRIO = VRIOT {TTPCD} VRISA = VRISAT {TTPCD} VMINIV < VRIO, THEN: GO TO STEP 16 (VMINIV > VRIO), And: (VMINIV < VRISA), IF: THEN: Go to Step 24 IF: VMINIV > VRISA, THEN: GO TO STEP 29 Where: VRIO = Minimum (No Current) Voltage Drop - VDC Across Lamp Regulator in "Saturated" Condition VRISA = Voltage level at which lamp regulator - VDC changes from "Saturated" condition operation to "Active" operation VRIOT = Input Table of VRIO as a function of TTPCD VRISAT = Input Table of VRISA as a function of TTPCD Step 16 Initialize Counter and Lamp Regulator Voltage J = 1VRI(J) = VMINIVStep 17 Calculate Lamp Regulator Current IRI(J,1) = 0.0IRI(J,2) = 0.0

IRI(J,3) = 0.0

Step 17 (Contd)

Where: VRI(J) = Lamp Regulator Input Voltage - VDC

IRI(J,K) = Lamp Regulator Input Current - Volts

When: K=1 - Lamp Off

K=2 - Lamp Flashing - Effective

K=3 - Lamp On

${\underline{\mathtt{Step 18}}}$ Increment Counter and Lamp Regulator Voltage and Compare With Reference

J = J + 1

VRI(J) = VRI(J-1) + VINCIV

IF: (VRI(J) > VRIO) And:
IF: (VRI(J) < VMAXIV)</pre>

THEN: GO TO STEP 20
IF: VRI(J) > VMAXIV
THEN: GO TO STEP 32

Step 19 Calculate Lamp Regulator Currents

IRI(J,1) = 0.0

IRI(J,2) = 0.0

IRI(J,3) = 0.0

REPEAT STEPS 18 AND 19

Step 20 Calculate Lamp Regulator Current

IRI(J,1) = 0.0

IRI(J,2) = (VRI(J)-VRIO)/(RL + ZRS)

IRI(J,3) = (VRI(J)-VRIO)/(RL + ZRS)

Where: ZRS = Regulator Impedance in "Saturated" Condition - Ohms

ZRS = ZRST (TTPCD)

ZRST = Input Table of ZRS as a function of TTPCD

Step 21 Increment Counter and Lamp Regulator Voltage and Compare with Reference

J = J + 1

VRI(J) = VRI(J - 1) + VINCIV

THEN: Go to Step 22
IF: VRI(J) > VMAXIV
THEN: GO TO STEP 32

REPEAT STEPS 20 AND 21

Step 22 Calculate Lamp Regulator Currents

VLB = VLBT {VRI, TTPCD}

 $ZRA = ZRAT \{TTPCD\}$

IRI(J,1) = 0.0

 $IRI(J,2) = V_{LR}/(\overline{RL} + ZRA)$

 $IRI(J,3) = V_{LB}/(RL + ZRA)$

Where: V_{LR} = Regulator Output Voltage at Zero Current - Volts

ZRA = Regulator impedance in "Active" region - Ohms

VLBT = Input Table of VLB as a function of VRI and TTPCD

ZRAT = Input Table of ZRA as a function of TTPCD

Step 23 Increment Counter and Lamp Regulator Voltage and Compare With Reference

J = J + 1

VRI(J) = VRI(J - 1) + VINCIV

IF: VRI(J) > VMAXIV THEN: GO TO STEP 32

REPEAT STEPS 22 AND 23

Step 24 Initialize Counter and Lamp Regulator Voltage

J = 1

VRI(J) = VMINIV

Step 25 Calculate Lamp Regulator Currents

IRI(J,1) = 0.0

 $IRI(J,2) = (VRI(J) - VRIO)/(\overline{RL} + ZRS)$

IRI(J,3) = (VRI(J) - VRIO)/(RL + ZRS)

Step 26 Increment Counter and Lamp Regulator Voltage and Compare with Reference

J = J + 1

VRI(J) = VRI(J - 1) + VINCIV

 \underline{IF} : (VRI(J) > VRISA), AND:

IF: (VRI(J) < VMAXIV)</pre>

THEN: GO TO STEP 27

IF: VRI(J) > VMAXIV
THEN: GO TO STEP 32

REPEAT STEPS 25 AND 26

Step 27 Calculate Lamp Regulator Currents

IRI(J,1) = 0.0

 $IRI(J,2) = VLB/(\overline{RL} + ZRA)$

IRI(J,3) = VLB/(RL + ZRA)

Increment Counter and Lamp Regulator Voltage and Compare with

Reference J = J + 1VRI(J) = VRI(J - 1) + VINCIVVRI(J) > VMAXIVIF: THEN: GO TO STEP 32 REPEAT STEPS 27 AND 28 Step 29 Initialize Counter and Lamp Regulator Voltage J = 1VRI(J) = VMINIVStep 30 Calculate Lamp Regulator Currents IRI(J,1) = 0.0 $IRI(J,2) = VLB/(\overline{RL} + ZRA)$ IRI(J,3) = VLB/(RL + ZRA)Step 31 Increment Counter and Lamp Regulator Voltage and Compare with Reference J = J + 1

THEN: Go to Step 32

VRI(J) = VRI(J - 1) + VINCIV

VRI(J) > VMAXIV

Step 28

REPEAT STEPS 30 AND 31

Step 32 (contd)

Where: XI(J,K) = PCD Group Current - Amperes

IHIT = Input Table of IHI(J) as a function of VRI(J)
and TTPCD

Step 33 Calculate PCD Group Voltage

XX(J,K) = VRI(J) + XI(J,K) * RLL

for: J = 1,50; K = 1,3

Where: XX(J,K) = PCD Group Voltage - VDC

4. PERFORMANCE ANALYSIS

The Performance Analysis segment of the DSPA program uses known power system arrangements, electrical sizes, and physical characteristics to determine the response (operational characteristics) of the equipment to a given stimulus (load and environmental profiles). A block diagram of the Performance Analysis driver program is shown in Figure 4.1. As shown, the object of the performance analysis methodology is to obtain the raw power bus operating point for each time increment during a mission period. Once this operating point is obtained, all power system operational characteristics are determinable.

To obtain the operating point, the power system is divided into groups. These groups and the equipment comprising them are:

- a. Power Source Group:
 - 1) Solar Array.
 - 2) Shunt Limiter.
 - 3) Solar Array Isolation Diodes.
 - 4) Solar Array Cable.
- b. Energy Storage Group:
 - 1) Batteries.
 - 2) Battery Chargers.
 - 3) Battery Isolation Diodes.
 - 4) Battery Cables.
- c. Power Conditioning and Distribution Group:
 - 1) User Loads.
 - 2) Load Cable.

Current-voltage (I-V) characteristics are determined for each equipment group. The Power Conditioning and Distribution Group characteristics are then deducted from those of the Power Source Group to obtain a Difference Curve. The intersection of the Difference Curve with the

FIGURE 4-1. POWER SYSTEM PERFORMANCE ANALYSIS

Energy Storage Group characteristics is an estimate of the voltage and current on the raw power bus (operating point). During the time increment under examination, the battery is in a state-of-charge, discharge, or open-circuit depending on the value and sign of the operating point current.

After the operating point is obtained, the operational characteristics of the power system equipment are determined. The computer program is then ready for examination of power system response for the next time increment. The process is repeated until the end of the mission period.

5040-27

PROGRAM ALGORITHMS

Step 1 Obtain Pertinent Mission and Equipment Information

QON = Solar Insolation Level for Lamp Flasher Turn-On - Watts/Meter²

QOFF = Solar Insolation Level for Lamp Flasher Turn-Off - Watts/Meter²

ISH = Shunt Limiter Type

Where: 0 = None

1 = Ordinary Zener Diode

2 = Temperature Compensated Zener Diode

3 = Active Shunt Limiter

VBUSI = Initial Estimate of Power System Operating Point Voltage at Raw Power Bus - VDC

Step 2 Obtain Free Format Data Read-In Card Type

NCTYPE = Free Format Card Type

Where: 0 = Start-Up Data

1 = Time-Variant Data

<0 = Termination Data

IF: NCTYPE = 0 THEN: GO TO STEP 3

IF: NCTYPE = 1
THEN GO TO STEP 6

IF: NCTYPE < 0

THEN: Terminate Performance Analysis Calculations and return to main program

Step 3: Obtain Free Format Start-Up Data

START = Starting "Time" of Computer Run - YYDDDHHMM

Where: $YY = Year \{00-99\}$

DDD = Date (001-365) days from beginning of the year

HH = Hours {00-24} Hours after Midnight

MM = Minutes (00-60) minutes after the hour

```
Step 3 (Contd)
           HLLA = Nominal Time Increment for Performance Analysis
                   Calculations - hours (Default value = 1.0 hours)
          ACCQB = Battery State-of-Charge Accuracy Requirement for the
                   Predictor-Corrector Routine - (Default value = 0.01)
             CT = Cloud Type (at Start-Up)
                   0.0 = Cirrus or Cirrostratus Clouds
                   1.0 = Stratus Clouds
                   2.0 = Other Cloud Types
             TC = Cloud Cover (at Start-Up)
                                 0.0 = No Cloud Cover
                   (0.0 < TC \le 10.0) = Tenths of Sky Covered by Clouds
          INDFLS = Lamp Flasher Condition Indicator
                   0 = Lamp Flasher Off (Lamp Not Flashing)
                   1 = Lamp Flasher On (Lamp Flashing)
          Calculate Starting "Time" Information for Computer Run
Step 4
```

YEAR = YY {00-99} - Year

DATE = DDD {001-365} - Days from beginning of year

TIMEH = HH + $\frac{MM}{60.0}$ - Hours after Midnight

DATEM = 0.0 - Elapsed Time Since "Start" of Computer run - days

Initialize "Starting" Time Reference Data Step 5

YEAR1 = YEAR

DATE1 = DATE

DATEM1 = DATEM

Go To Step 10

```
Step 6
          Obtain Free Format Time-Varying Data
            DURA = Duration of a Significant Time Interval (= DDDHHMM)
          Where: DDD = Days (> 000)
                   HH = Hours (\geq 00)
                   MM = Minutes ( \ge 00)
             NTS = Number of time steps during Significant Time Interval (DURA)
                   for printing out Performance Analysis Data
              CT = Cloud Type (During Significant Time Interval)
              TC = Cloud Cover (During Significant Time Interval)
          Initialize Time Step Counter and Durations of Various Intervals
Step 7
            LNTS = 1
           DURAH = (24.0) * DDD + HH + \left(\frac{MM}{60.0}\right)
            HINT = DURAH/NTS
          Where: DURAH = Duration of a Significant time interval - Hours
                   HINT = Duration of a print-out time step - Hours
                          during a significant time interval
Step 7a
          Initialize Reference Value of Print-Out Time Step Duration
              H2 = 0.0
          Where: H2 = Reference Value of Print-Out Time Step Duration - Hours
          Calculate Performance Analysis Calculation Time Interval
Step 8
               H = AMIN (HLLA-H2, HINT)
          Where: H = Performance Analysis Calculation Time Interval - Hours
          Calculate "Time" of Performance Analysis Calculation
Step 9
           DATEM = DATEM1 + (H/24.0)
           DATE2 = DATE1 + (H/24.0)
           TIMEH = (DATE2 - IFIX (DATE2)) * 24.0
            DATE = IFIX (DATE2)
```

Step 9 (Contd)

IF: DATE > 365.0

THEN: DATE = DATE - 365.0, AND,

THEN: YEAR = YEAR1 + 1.0

Step 9a Initialize Low Insolation Load Selector

KLL = 3

Where: KLL = Load Selector at Low Values of Solar Insolation

1 = Lamp Off

3 = Lamp On

Step 10 Obtain Power Sources Group Characteristics at the Raw Power Bus

NESP = Number of Electrical Circuits in Solar Array

RSA = Solar Array Electrical Circuit Cable Resistance - Ohms

MSAPWR = Solar Array Maximum Power - Watts

QDT = Total Solar Insolation Incident on Solar Array - Watts/Meter²

SX(I) = Power Source Group Voltage - VDC

SY(I) = Power Source Group Current at SX(I) - Amperes

I = 1, NAPSG

Where: IF: ISH = 0; THEN: NAPSG = MFINAL

IF: ISH > 0; THEN: NAPSG = NFINAL

IF: QDT < 0.0; THEN: NAPSG = KFINAL

MFINAL OR NFINAL are calculated as part of the Power Source Group current-voltage estimate

KFINAL is the maximum extent of the SX(I) and SY(I) arrays.

Step 11 Determine Lamp Flasher Condition

IF: QDT < 0.0

THEN: INDFLS = 1 AND: KL = 2

IF: (0.0 < QDT < QON)

THEN: INDFLS = 1 AND: FL = 3

IF: (QON < QDT < QOFF) AND: INDFLS = 0

THEN: INDFLS = 0 AND: KL = 1

```
Step 11 (Contd)
                 (QON < QDT < QOFF) AND: INDFLS = 1
          THEN:
                 INDFLS = 1 AND: KL = 3
                 QDT > QOFF
          THEN: INDFLS = 0 AND: KL = 1
                 NCTYPE = 0 AND: KL = 3
          IF:
          THEN: KL = 2
          Where: KL = Load Selector Indicator
                   1 = Lamp Off (During Daylight)
                   2 = Lamp Flashing (At Night)
                   3 = Lamp Off/On (At Low Solar Insolation Levels)
         Determine Power Conditioning and Distribution Group Level Selector
Step 12
                 KL = 1
          IF:
          \overline{\text{THEN}}: K = 1
                 KL = 2
          THEN: K = 2
                 KL = 3 \text{ AND}: KLL = 1
          THEN: K = 3
          Where: K = Power Conditioning/Distribution Group Load Selector
                  1 = Lamp Off
                  2 = Effective Load - Lamp Flashing
                  3 = Lamp On
          Obtain Power Conditioning and Distribution Group Characteristics at
Step 13
          the Raw Power Bus
           XX(J) = Power Conditioning and Distribution Group Voltage - VDC
           XI(J) = Power Conditioning and Distribution Group Current at XX(J) -
                   Amperes
               J = 1.50 (Number of Data Points)
               K = 1, 2, or 3 (See Above)
              DL = Lamp Duty Cycle
```

```
Step 14 Rearrange Voltage Data into One Array in Ascending Order
```

I = 1, NAPSG

J = 1,50

L = 1, (50 + NAPSG)

Where: DIFIV(L,1) = Difference Curve Voltages - VDC

Step 15 Calculate Difference Curve Current Values

DIFIV(L,2) = SY(I) - XI(J)

Where: DIFIV(L,2) = Difference Curve Current at Voltage Level
DIFIV(L,1) - Amperes

SY(I) and XI(J) are selected at voltage DIFIV(L,1)

Note: If DIFIV(L,1) are beyond the limits of one of the current arrays, then use extrapolation methods based on existing current data.

Step 16 Obtain Energy Storage Group Characteristics at the Raw Power Bus

ICHRT = Battery Charger Type

0 = No Charger

1 = Constant Voltage Charger with Current Limit

NBATT = Number of Batteries in Parallel

TRESLT(LY,1) = Energy Storage Group Voltage - VDC

IF: ICHRT = 0; THEN: LY = 1,9

IF: ICHRT = 1; THEN: LY = 1,10

CB = Maximum Discharge Capacity - Ampere-Hours (for each Battery) at a standard discharge rate to a standard terminal) voltage per cell at a standard temperature.

Step	16	(Contd)
		1 /

	NiCd Batteries	Pb-Acid Batteries
Standard Discharge Rate	c/ 2	c/20
Standard Min Cell Terminal Voltage	0.5	1.0
Standard Temperature	70°F	70°F

TTESG = Energy Storage Group Temperature - °F

QB = State of Charge of each battery - dimensionless

Step 17 Initialize Power System Operating Point

 $\underline{\text{IF:}} \quad \text{NCTYPE = 0,} \\
\underline{\text{THEN:}} \quad \text{VBUS = VBUSI}$

Where: VBUS = Power System Voltage at Operating Point - VDC (at Raw Power Bus)

Step 18 Calculate Current Difference

DELCUR = DIFIV(M,2) - TRESLT(M,2)

Where: $DIFIV(M,2) = F\{DIFIV(L,2), DIFIV(L,1)\}$ at DIFIV(L,1) = VBUS

TRESLT(M,2) = F {TRESLT(LY,2), TRESLT(LY,1)} at TRESLT(LY,1) = VBUS

DELCUR = Difference in current level between difference curve and energy storage group - Amperes

Step 19 Compare Current Difference with Reference and Calculate New Operating Point Voltage

IF: DELCUR < 0.0005 (Amperes)

THEN: Go to Step 20

VBUS2 = VBUS

VBUS = VBUS + DVBUS

VBUS3 = VBUS

Where: DVBUS = Increment added to operating point voltage estimate by Newton-Raphson closure routine - VDC

VBUS2, VBUS3 = Estimates of VBUS

REPEAT STEPS 18 AND 19

Step 20 Determine Operating Point Stability

<u>IF</u>: SDIF < SESG THEN: GO TO STEP 21

Where: SESG = Slope of the Energy Storage Group Current-Voltage Characteristics (TRESLT) at VBUS - Amperes/VDC

SDIF = Slope of the Difference curve (DIFIV) Current-Voltage Characteristics at VBUS - Amperes/VDC

VBSAVE = VBUS

Compare VBUS3 to VBUS2 and continue in the same general "direction" (from VBUS2 to VBUS3) with respect to voltage (by repeating steps 18, 19, 20) until a stable point is found or until the appropriate lower or upper voltage limits (based on Difference Curve Voltages) are reached. If no stable point is obtained, set VBUS = VBSAVE and repeat steps 18, 19, 20 in the opposite direction (relative to voltage) until a stable point is obtained or until the appropriate lower or upper voltage is reached.

If no stable operating point is estimated, then terminate run and print out the following information:

DIAGNOSTIC:

"RUN TERMINATED - NO STABLE OPERATING POINT"

"TRESLT(LY,1) ="
"TRESLT(LY,2) ="
LY = 1, 10 to (10 * NBATT)

"DIFIV(L,1) ="
"DIFIV(L,2) ="
L = 1, (50 + NAPSG)

Step 21 Calculate Energy Storage Group Current

XITT = DIFIV(M,2) at DIFIV(M,1) = VBUS

Where: XITT = Energy Storage Group Current - Amperes at VBUS

Step 22 Obtain Energy Storage Unit Current-Voltage Characteristics

TRESV(LY) = Energy Storage Unit Voltage - VDC

IF: ICHRT = 0; THEN: LY = 1, 9

IF: ICHRT = 1; THEN: LY = 1, 10

```
Calculate Battery Current
Step 23
            BCUR = F {TRESI(LY), TRESV(LY)} at TRESV(LY) = VBUS
          Where: BCUR = Current for each Battery - Amperes
                     + E Battery Charging
                     0 ≡ Battery Open Circuit
                     - E Battery Discharging
          Obtain Battery Current-Voltage Characteristics
Step 24
           VG(LJ) = Battery Potential - VDC
          XIB(LJ) = Battery Current - Amperes
                    at VB(LJ)
               LJ = 1, 9 (Number of data points)
          Calculate Battery Potential
Step 25
            VBAT = F\{VB(LJ), XIB(LJ)\} at XIB(LJ) = BCUR
          Where: VBAT = Potential of each battery - VDC
Step 26
          Calculate Power Conditioning and Distribution Group Current
           XIPCD = F \{XI(J), XX(J)\}  at XX(J) = VBUS
               J = 1, 50 \text{ (data points)}
               K = 1, 2 or 3 (from Step 12)
          Where: XIPCD = Input Current to Power Conditioning and Distribution
                          Group - Amperes
          Calculate Power Sources Group Current
Step 27
           XIPSG = F\{SY(I), SX(I)\} \text{ at } SX(I) = VBUS
               I = 1, NAPSG
          Where: XIPSG = Power Sources Group Output Current - Amperes
                          at the Operating Point
```

Step 28 Obtain Shunt-Limiter Current-Voltage Characteristics at the Raw Power Bus

ZV(IZ) = Shunt Limiter Voltage - VDC

ZI(IZ) = Shunt Limiter Current - Amperes
at ZV(IZ)

IZ = 1, 20 (data points)

Step 29 Calculate Shunt Limiter Current

 $XIZ = F{ZI(IZ), ZV(IZ)}$ at ZV(IZ) = VBUS

Where: XIZ = Shunt Limiter Current at the operating point - Amperes

Step 30 Calculate Solar Array Current

XISA = XIZ + XIPSG

Where: XISA = Solar Array Current - Amperes

Step 31 Calculate Solar Array Electrical Circuit Current

XIEC = XISA/NESP

Where: XIEC = Solar Array Electrical Circuit Current - Amperes

Step 32 Calculate Solar Array Potential

VDIODE - AD1 {XIEC}

VSA = VBUS + VDIODE + (XIEC * RSA)

Where: VDIODE = Electrical Section Blocking Diode Voltage Drop at XIEC - VDC

VSA = Solar Array Potential - VDC

AD1 = Input Table of VDIODE as a function of XIEC

Step 33 Calculate Equipment Power Levels

PESG = | VBUS * XITT|

PBATT = | VBAT * BCUR |

PPCD = VBUS * XIPCD

PPSG = VBUS * XIPSG

PSL - VBUS * XIZ

PSA = VSA * XISA

Step 33 (Contd)

Where: PESG = Energy Storage Group Power - Watts

PBATT = Power Level of each Battery - Watts

PPCD = Power Conditioning and Distribution Group Power -

Watts

PPSG = Power Source Group Power - Watts

PSL = Shunt Limiter Power - Watts

PSA = Solar Array Power - Watts

Step 34 Calculate Equipment Power Margins

MARSA = MSAPWR - PSA

Where: MARSA = Solar Array Power Margin - Watts

Step 36 Initialize Battery Charge Efficiency

IF: NCTYPE = 0; THEN: ETA = 1.0

Where: ETA = Instantaneous Charge Efficiency for each Battery -

dimensionless

Step 37 Compare Battery Charge Efficiency With Reference

<u>IF</u>: ETA < 0.0; <u>THEN</u>: ETA = 0.00001; <u>AND</u>: Go To Step 42

Step 38 Compare Battery Current With Reference

IF: BCUR < 0.0; THEN: ETA = 1.0; AND: Go To Step 42

Step 39 Calculate Normalized Battery Charge Rate

CHRN = BCUR/CB

Where: CHRN = Normalized Battery Charge Rate - Hour-1

Step 40 Calculate Instantaneous Battery Charge Efficiency

ETA = A{TTESG, CHRN, QB}

Where: A = A series of Input Data Tables (A1,A2,A3,A4,A5,A6) giving instantaneous charge efficiency as a function of battery temperature, normalized battery charge rate and battery state-of-charge

Step 41 Compare Battery Charge Efficiency With Reference

IF: ETA < 0.0, THEN: ETA = 0.00001

Step 42 Calculate Rate of Charge of Battery State-of-Charge With Time

DQBDT = (BCUR * ETA)/CB

Where: DQBDT = Rate of Charge of each Pattery State-of-Charge with Time - Hours-1

Step 44 Compare Card Type with Reference

IF: NCTYPE = 0; THEN: H = 0; AND, THEN: GO TO STEP 49

Step 45 Compare Load Selection Indicator With Reference and Determine Reference Calculation Interval

 $\underline{IF}: KL = 1, \underline{OR}, \\
\underline{IF}: KL = 2,$

THEN: GO TO STEP 49

Where: Hl = Performance Analysis Reference Calculation Interval - Hours

Step 46 Compare Low Insolation Load Selector With Reference and Calculate Performance Analysis Calculation Interval

 $\underline{IF}: \quad \text{KLL} = 1$

THEN: GO TO STEP 47

H = DL * H1

GO TO STEP 49

Step 47 Calculate Performance Analysis Calculation Interval

H = (1.0 - DL) * H1

Step 49 Calculate Battery State-of-Charge Increment

DELOB = H * DOBDT

Where: DELQB = State-of-Charge Increment for each Battery

Step 51 Compare Card Type and Low Insolation Load Selector With References

IF: NCTYPE = 1, AND,

 $\overline{\text{IF}}$: KLL = 3,

THEN: GO TO STEP 57

Step 53 Calculate New Battery State-of-Charge

QB = QB + DELQB

Step 54 Calculate Battery Electrolyte Freezing Temperature

SPGR = SPGR1 {QB}

TBFRZ = TBFRZ1 {SPGR}

Where: SPGR = Electrolyte Specific Gravity for each Battery

TBFRZ = Electrolyte Freezing Temperature for each Battery - °F

SPGR1 = Input Table of SPGR as a function of QB

TBFRZ1 = Input Table of TBFRZ as a function of SPGR

Step 56 Compare Card Type With Reference

IF: NCTYPE = 0

THEN: GO TO STEP 2

GO TO STEP 63

Step 57 Calculate Battery State-of-Charge Relative Increment

DQB = ABS(DEIQB/QB)

Where: DQB = State-of-Charge Relative Increment for each Battery

Step 59 Compare Buttery SOC Relative Increment With Reference

IF: $(H + ACCQB/DQB) \ge (HINT - H2 - 0.01)$

THEN: Go To Step 60

IF: (DQB) < (0.7 * ACCQB), OR:

 \overline{IF} : (DQB) > (ACCQB)

THEN: H = (H * ACCQB/DQB), AND:

THEN: RETURN TO STEP 9

Step 60 Calculate New Battery State-of-Charge

QB = QB + DELQB

Step 61 Calculate Battery Electrolyte Freezing Temperature

SPGR = SPGR1{QB}

TBFRZ = TBFRZ1{SPGR}

Compare Load Selection Indicator and Low Insolation Load Selection Step 62 With Reference and Calculate Low Insolation Load Selector

KL = 3, AND,IF:

KLL = 3IF:

THEN: KLL = 1, AND

THEN: GO TO STEP 12

QB = 0Step 62a IF:

THEN: Print Error Message, AND THEN: Return to Main Program

Step 63 Calculate Time Reference Data

DATEM1 = DATEM

DATE1 = DATE

TIMEH = 24.0 * (DATE1 - IFIX(DATE))

YEAR1 = YEAR

Step 64 Calculate Time Elapsed Since Last Print-Out

H2 = H2 + H

Step 65 Compare Elapsed Time With Duration of Time Until Next Print-Out

> IF: H2 > HINT

THEN: Print Performance Analysis Output Information

THEN: GO TO STEP 66

RETURN TO STEP 8

Step 66 Increment Time Step Counter and Compare With Reference

LITTS = LITTS + 1

LNTS > NTS

THEN: CO TO STEP 2

RETURN TO STEP 7a

4.1 Power Sources Group

The Power Source Group is made up of the solar array, the shunt limiter, the solar array isolation diodes, and the power source series resistance. The characteristics of these elements are calculated for the environmental conditions in which the subsystem is operated and are then combined into a single power source current-voltage curve at the unregulated bus. Performance data are stored for a single solar cell, for an isolation diode, for the specific shunting device to be used, and for the series resistance that are typical of those in the buoy solar array. The data are projected from the component level into the electrical configuration of the buoy solar array, and the program solves sets of equations that are designed to predict solar array/shunt limiter I-V characteristics at the unregulated bus. The Power Source Group program also includes equations to estimate the array performance when the array is misoriented from the sun vector and to estimate performance degradation due to cloud cover, temperature, and environmental effects.

PROGRAM ALGORITHMS

Step 1	Obtain the exact date and time of year
	TIMEH = Daily Time - Hours after Midnight Range of values: 0-24
	DATE = Date - Days from start of the year Range of Values: 1-365
Step la	IF: ITAPE ≠ 0 THEN: Obtain TTAMB from 'MERGE' file THEN: GO TO STEP 5
Step 2	Obtain the Average Yearly Temperature TTAVE = Average Yearly temperature in selected location - *F

Step 3 Calculate Average Daily Temperature

TTA = TTAVE + DTTA

Where: TTA = Average Daily Temperature - °F

DTTA = Average Daily Temperature Increment - °F

DTTA is obtained from input data in a table of average daily temperature increment as a function of the date, ie.,

DTTA = DTTA1{DATE}

Step 4 Calculate Ambient Temperature

STAMB = TTA + DTTAMB

Where: TTAMB = Ambient Temperature at selected location - °F

DTTAMB = Average hourly temperature increment at selected location - °F

DTTAMB is obtained from a table of Average hourly temperature increment as a function of the time, ie.,

DTTAMB = DTAMB1(TIMEH)

Step 5 Obtain Power Source Group Equipment Temperature Characteristics

DTTPSG = Power Source Group Equipment Temperature Rise - "F

Step 6 Calculate Solar Array Temperature

TSAF = TTAMB + DTTPSG

Where: TSAF = Solar Array Temperature - °F

Step 7 Convert Solar Array Temperature

TSAR = TSAF + 459.67

TSAK = (5.0/9.0) * TSAR

TSAC = TSAK - 273.15

Where: TSAR = Solar Array Temperature - °R

TSAK = Solar Array Temperature - °K

TSAC = Solar Array Temperature - °C

Step 8 Calculate Solar Vector Location in Equatorial Plane

ALPHEQ = OMEGA * DATE

Where: ALPHEQ = Solar Vector Location - Radians

OMEGA = $(2 * \pi)/365.242$

 $\pi = 3.14159$

Note: There are 365.242 days per tropical year as measured from

Vernal Equinox to Vernal Equinox

Step 9 Calculate Solar Radiation Variables

VAR(I) = FAO(I) + FAI(I) * COS(ALPHEQ) + ...

- + FA2(I) * COS(2.0 * ALPHEQ) + ...
- + FA3(I) * COS(3.0 * ALPHEQ) + ...
- + FB1(I) * SIN(ALPHEQ) + ...
- + FB2(I) * SIN(2.0 * ALPHEQ) + ...
- + FB3(1) * SIN(3.0 * ALPHEQ)

Step 9 (contd)

DECL = VAR (1) * $\pi/180.0$

ET = VAR(2)

APPSC = VAR(3) * 3.1524808

ATMEXC = VAR(4)

SDF = VAR (5)

Where: DECL = Solar Declination Angle - Radians

ET = Equation of Time Difference - Hours

APPSC = Apparent Solar Constant - Watts/Meter²
(at AMO)

ATMEXC = Atomsphere Extinction Coefficient - Air Mass⁻¹

SDF = Sky Diffuse Factor

FA, FB = Fourier Coefficients obtained from input data tables "Solar Radiation Fourier Coefficients"

Step 10 Obtain Buoy Latitude

THELAD = Buoy latitude - degrees { + North - South

Step 11 Convert Buoy Latitude

THETLA = THELAD * $\pi/180.0$

Where: THETLA = Buoy Latitude - Radians

Step 12 Calculate Terminator Hour Angle

IF: THETLA \geq [($\pi/2.0$) - DECL]

THEN: HOURT = T

Go to Step 13

HOURT = ARCCOS (-1.0 * TAN (THETLA) * TAN (DECL))

Where: HOURT = Terminator Hour Angle - Radians

Step 13 Convert Terminator Hour Angle HOURA = HOURT * $12.0/\pi$ Where: HOURA = Terminator Hour Angle - Hours Step 14 Obtain Buoy Location Time Zone Number TZN = Time Zone Number (Hours behind Greenwich Mean Time) Step 15 Obtain Buoy Longitude + West THELOD = Buoy Longitude - degrees Step 16 Calculate Time of Sunrise and Sunset at Buoy Location SRT = 12.0 - HOURA - ET - TZN + (THELOD/15.0)SST = 24.0 - SRTWhere: SRT = Sunrise time - Hours SST = Sunset time - Hours Step 17 Calculate Buoy Location Hour Angle BHOURD = 15.0 * (TIMEH - 12.0 + TZN + ET) - THELOD BHOUR = BHOURD * $\pi/180.0$ Where: BHOURD = Buoy Location Hour Angle - Degrees BHOUR = Buoy Location Hour Angle - Radians Test for Solar Occultation Step 18 IF: ABS (BHOUR) \geq ABS (HOURT) Go to Step 118 Calculate Direction Cosines of Direct Solar Radiation Step 19 COS (THETZS) = COS (BHOUR) * COS (DECL) * COS (THETLA) + ... + SIN (DECL) * SIN (THETLA)

Step 19 (contd)

Where: THETZS = Angle between the local zenith and the solar

vector - radians

COS (THW) = COS (DECL) * SIN (BHOUR)

TAN (DECL) IF: COS (BHOUR) >

THEN: KS = 1.0

 $COS (BHOUR) < {TAN (DECL) \atop TAN (THETLA)}$ IF:

THEN: KS = -1.0

 $\cos (THS) = KS * {[1 - \cos (THETZS)]^2 - [\cos (THW)]^2}^{0.5}$

Where: THW, THS = Additional Direction Angles - Radians

Calculate Solar Altitude Step 20

SALT = ARCSIN (COS (THETZS))

Where: SALT = Solar Altitude (Angle between the solar vector and

the Horizontal, i.e., Earth's surface) - Radians

Step 21 Calculate Solar Azimuth

> cos(THS) > 0IF:

THEN: SAZM = ARCSIN [COS (THW)/COS (SALT)]

GO TO STEP 22

cos(THs) < 0IF:

THEN: SAZM = π - ARCSIN [COS (THW)/COS (SALT)]

Where: SAZM = Solar Azimuth (Angle between the Solar Vector.

Projected onto the Horizontal Surface and the

South-Pointing Vector on the Horizontal

Surface) - Radians

```
Obtain Cloud Cover Conditions
Step 22
             CT = Cloud Type
                  0.0 = Cirrus or Cirrostratus Clouds
                  1.0 = Stratus Clouds
                  2.0 = Other Cloud Types
             TC = Total cloud Cover
                   1.0 = 1/10 of sky covered
                   2.0 = 2/10 of sky covered
                  9.0 = 9/10 of sky covered
                  10.0 = 10/10 of sky covered
            ICT = 1 + IFIX (CT)
            Where: ICT = Cloud Type indicator
                          1 = Cirrus of Cirrostratus Clouds
                          2 = Stratus Clouds
                          3 = Other Cloud Types
Step 23
            Calculate Cloud Cover Modifier
            IF:
                   TC = 0.0,
            THEN: CCM = 1.0 and go to Step 24
            IF:
                   SALT < 11/4.0;
            THEN: ISALT = 1
                   SALT > 1/4.0;
            THEN: ISALT = 2
            Where: ISALT = Solar Altitude Indicator
                      CCN = PO (ICT, ISALT) + P1 (ICT, ISALT) * TC + ...
                            + P2 (ICT, ISALT) * (TC**2.0) + ...
                            + P3 (ICT, ISALT) * (TC**3.0)
```

Step 23 (contd)

Where:

CCM = Cloud Cover Modifier

PO, Pl, P2, P3 = Polynomial Coefficients obtained from input data tables "Cloud Cover Modifier Polynomial Coefficients"

Step 24 Obtain Clearness Number

CN = Clearness Number

= 0.7-0.9 for an industrial atmosphere

= 0.85-1..0 for non-industrial atmospheres

Step 25 Calculate Intensity of Direct Normal Solar Radiation

QDN = APPSC * CN * CCM * EXP (-ATMEXC/COS (THETZS))

Where: QDN = Direct Normal Solar Radiation Intensity - Watts/Meter2

Step 26 Obtain Solar Array Pointing Angles

PHIAID = Surface Tilt Angle from Horizontal - Degrees (Angle between local Zenith and Solar Array Normal)

PHIAAD = Surface Azimuth Angle from South - Degrees (Angle between South pointing vector and projection of array normal on horizontal surface)

= + if West of South

= - if East of South

Step 27 Convert Solar Array Pointing Angles

PHIAI = PHIAID * $\pi/180.0$

PHIAA = PHIAAD * π/180.0

Where: PHIAI = Surface Tilt Angle - Radians

PHIAA = Surface Azimuth Angle - Radians

Step 28 Calculate Direction Cosines of Array Normal (Reference Axis: Vertical, Horizontal to West, Horizontal to South) ETAA = COS (PHIAI) ETAB = SIN (PHIAA) * SIN (PHIAI) ETAC = COS (PHIAA) * SIN (PHIAI) Where: ETAA, ETAB, ETAC = Array Normal Direction Cosines Step 29 Calculate Solar Array Tilt Angle COS (TILT) = ETAA * COS (THETZS) + ... + ETAB * COS (THW) + ... + ETAC * COS (THS) Where: TILT = Solar Array Tilt Angle - Radians (Angle between Solar Vector and Solar Array Normal) Calculate Intensity of Direct Solar Radiation Incident on the Step 30 Solar Array IF: COS (TILT) > 0.0 THEN: QD = QDN * COS (TILT) IF: $\cos (TILT) \leq 0.0$ THEN: QD = 0.0Where: QD = Direct Solar Radiation Incident on Solar Array - Watts/Meter2 Calculate Sky Brightness Step 31 BS = SDF + QDN/(CN+2.0)Where: BS = Sky Brightness - Watts/Meter² Obtain Horizontal Surface (Ground/Ocean) Reflectivity Step 32 REFLH = Horizontal Surface Reflectivity for Solar Radiation

Calculate Horizontal Surface Brightness

IF· COS (PILT) > (_

Vertical Solar Array

YV = 0.45

Step 33

Step 36

IF: COS (TILT) > (-0.2); THEN: YV = 0.55 + 0.437 * COS (TILT) + 0.313 * ((COS (TILT)**2.0)

QDSV = QDN * (SDF * YV + (REFLH * (SDF + $\cos (THETZS)))/2.0$)

Calculate Intensity of Sky Diffuse Radiation Incident on a

Where: QDSV = Sky Diffuse Radiation Incident on a Vertical Solar Array - Watts/Meter²

Step 37 Calculate Intensity of Sky Diffuse Radiation Incident on Solar Array

QDS = QDSV + (QDSH - QDSV) * COS (SALT)

Where: QDS = Sky Diffuse Radiation Incident on Solar Array - Watts/Meter² Step 38 Calculate Intensity of Total Solar Insolation Incident on Solar Array

QDT = QD + QDG + QDS

Where: QDT = Total Solar Radiation Incident on Solar Array - Watts/Meter²

Step 39 Obtain Elapsed Time From Start of Mission

DATEM = Elapsed time from start of mission - days

Step 40 Obtain Current Degradation Factors for Solar Array

CDEGA = Solar Array Current Degradation Factor Due to Fabrication Losses - Percent (from zero)

CDEGB = Solar Array Current Degradation Factor Due to Terrestrial Performance Extrapolation Uncertainty - Percent (from zero)

Step 41 Calculate Current Degradation Factor Due to Environmental Effects

CLEGC = SADEGC (DATEM)

Where: CDEGC = Solar Array Current Degradation Factor Due to Environmental Effects - Percent (from zero)

SADEGC = Table of Solar Array Input Current Degradation
Due to the Environment (in Percent from Zero)
as a function of DATEM

Step 42 Calculate Solar Array Current Degradation Factor

 $CDEG = \frac{1.0 * 10^6 - (100.0 - CDEGA) * (100.0 - CDEGB) * (100.0 - CDEGC)}{1.0 * 10^6}$

Where: CDEG = Solar Array Current Degradation Factor - Dimensionless Step 43 Obtain Voltage Degradation Factor for Solar Array

VDEGA = Solar Array open circuit voltage degradation due to temperature uncertainty - Percent (from zero)

Step 44 Calculate Voltage Degradation Factor Due to Environmental Effects

VDEGB = SADEGV (DATEM)

Where: VDEGB = Solar Array Open Circuit Voltage Degradation

Factor due to Environmental Effects -

Percent (from zero)

SADEGV = Table of Solar Array Open Circuit Voltage

Degradation due to the Environment (in percent

from zero) as a function of DATEM

Step 45 Calculate Solar Array Voltage Degradation Factor

 $VDEG = \frac{1.0 * 10^{14} - (100.0 - VDEGA) * (100.0 - VDEGB)}{1.0 * 10^{14}}$

Where: VDEG = Solar Array Voltage Degradation Factor - Dimensionless

Step 46 Obtain Solar Cell Spectral Correction Factor

SPECOR = Solar Cell Spectral Correction Factor - Dimensionless (Corrects for differences between Spectrum of Solar Radiation Incident on Solar Cell and Spectral Response of Solar Cell)

Step 47 Calculate Effective Solar Insolation

X = SPECOR * QDT/10.0

Where: X = Effective Solar Insolation Incident on Solar Cell - Milliwatts/Cm²

Step 48 Calculate Modified Solar Insolation

XX = X * (1.0 - CDEG)

Where: XX = Modified Solar Insolation - Mw/cm²

Step 49 Obtain Single Solar Cell Area

ACELL = Single Solar Cell Area - Cm2

Step 50 Calculate Short Circuit Current Temperature Coefficient for a Single Solar Cell

ALPHAC = $((7.428 * 10^{-7}) - (1.83 * 10^{-9}) * TSAC) * (XX) * ACELL/4.0$

Where: ALPHAC = Short Circuit Current Temperature Coefficient - Amperes/°C-cell

Step 51 Calculate Solar Cell Series Resistance

RCELLC = F{RSCELL, TEMTAB} at TSAC

Where: RCELLC = Solar Cell Series Resistance - Ohms (at Temperature TSAC)

RSCELL = Internal Table of Solar Cell Series Resistance as a function of Cell Temperature

TEMTAB = Internal Table of Temperature Range Associated with RSCELL

Step 51A Calculate Solar Cell I-V Curve Correction Factor

ROCELL = F (ROE, SUNLIT) at XX

Where: ROCELL = Solar Cell I-V Curve Correction Factor at Solar Insolation Level: XX

ROE = Internal Table of Solar Cell I-V Curve Correction Factor as a Function of Solar Insolation

SUNLIT = Internal Table of Solar Insolation Range Associated with ROE

Step 52 Calculate Open Circuit Voltage Temperature Coefficient for a Single Solar Cell

BETAA = F[BETAB(or BETAC or BETAD)] at XX and TSAC

BBETA = BETAA/1000.0

Where:

BBETA = Open Circuit Voltage Temperature Coefficient - (Volts/°C) at XX and TSAC

BETAA = Open Circuit Voltage Temperature Coefficient - (Mv/°C) at XX and TSAC

BETAB, BETAC, BETAD = Internal Tables of Solar Cell Open Circuit Voltage as a Function of Solar Insolation and Cell Temperature

SUNMW, SONMW, SENMW = Internal Tables of Solar Insolation Ranges Associated with (BETA) Tables

BTEMP, CTEMP, DTEMP = Internal Tables of Solar Cell
Temperature Ranges Associated with
(BETA..) Tables

Internal Tables BTEMP, SUNMW AND BETAB used when:

 $(100 \le XX \le 540 \text{ Mw/cm}^2) \text{ and } (-60 \le TSAC \le 160 ^{\circ}\text{C})$

Internal Tables CTEMP, SONMW, BETAC used when:

 $(5 \le XX \le 253 \text{ Me/cm}^2)$ and $(-40 \le TSAC \le 60^{\circ}\text{C})$

Internal Tables DTEMP, SENMW, BETAD used when:

 $(5 \le XX \le 100 \text{ Mw/cm}^2)$ and $(-140 \le TSAC \le -40^{\circ}C)$

Step 53 Obtain Single Cell ISC, VOC Data

IISC = Solar Cell Short Circuit Current - Amperes/Cell (at 145 Mw/Cm² Solar Insolation and 60°C)

VVOC = Solar Cell Open Circuit Voltage - Volts/Cell (at 145 Mw/Cm² Solar Insolation and 60°C)

Step 54 Calculate ISC, VOC Shift Due to Degradation

C1 = CDEG * IISC

C2 = VDEG * VVOC

Cl = Solar Cell Short Circuit Current Shift - Amps/Cell

C2 = Solar Cell Open Circuit Voltage Shift - Volts/Cell

Obtain Single Circuit (of Solar Cells) Arrangement Step 55

MS = No. of Solar Cells in Series in Each Circuit

NP = No. of Solar Cells in Parallel in Each Circuit

Step 56 Calculate Cell Electrical Circuit Parameters

ALPHA = ALPHAC * NP

BETA = BRETA * NS

RCELL = (0.114 + RCELLC) * NS/NP

RHO = ROCELL * NS/NP

Where: ALPHA = Short Circuit Current Temperature Coefficient

for a Single Circuit - Amperes/°C-circuit

BETA = Open Circuit Voltage Temperature Coefficient

for a Single Circuit - Volts/°C

RCELL = Single Circuit Series Resistance - Ohms

RHO = Series Resistance Temperature Correction Factor

Calculate Modified Electrical Circuit Short Circuit Current Step 57

ISC = IISC * NP * (1.0 - CDEG)

Where: ISC - Modified Electrical Circuit Short Circuit Current - Amperes/Circuit

Step 58 Calculate Short Circuit Current Differences (for an Electrical Circuit)

DISC = ISC * ((X/145.0) - 1.0) + ALPHA * (TSAC - 60.0)

Where: DISC = Short Circuit Current Difference due to current degradation, solar insolation changes and temperature changes - Amperes/Circuit

Step 59 Calculate Electrical Circuit Voltage and Séries Resistance Correction Factors

C3 = BETA * (TSAC - 60.0) + DISC * RCELL

C4 = RHO * (TSAC - 60.0)

Where: C3 = Electrical Circuit Voltage Correction Factor - Volts/Circuit

> C4 = Electrical Circuit Series Resistance Correction Factor - Ohms

Step 60 Obtain Reference Solar Cell Current-Voltage Characteristics

II(J) = Reference Solar Cell Current Data Point - Amperes
 (Internal Tables)

VV(J) = Reference Solar Cell Voltage Data Point - Volts
 (Internal Tables)

J = 1, 30

Step 61 Calculate Solar Cell Electrical Circuit Current-Voltage Characteristics

I(J) = NP + (II(J) - C1) + DISC

V(J) = NS * (VV(J) - C2) - C3 - (C4 * I(J))

J = 1, 30

Where: I(J) = Electrical Circuit Current - Amperes at the given level of V(J)

V(J) = Electrical Circuit Voltage - Volts

Step 62 Obtain Solar Array Voltage Increment

VSAINC = Solar Array Voltage Increment - Volts

- Step 63 Redefine Electrical Circuit Current-Voltage Array in Selected Voltage Increments as follows:
 - a) Set: Counter L=1 and voltage V2(L) = 0.0
 - b) Establish: Current I1(L) at V2(L)

 $I1(L) = F{I(J), V(J)} \text{ at } I(J) = 0.0$

- c) Increment: Counter L = L + 1 and voltage V2(L + 1) = V2(L) + VSAINC and Establish: Current I1(L + 1) at V2(L + 1). Until: $I1(L + 1) \le 0.0$
- d) Redefine: Last V2(L) at I1(L) = 0.0 $V2(L) = F\{I(J), V(J)\}$ at I(J) = 0.0
- e) Set: Current-Voltage Matrix Dimension to last counter value MFINAL = L
- Step 64 Obtain Number of Solar Cell Electrical Circuits in Solar Array

 NESP = Number of Electrical Circuits in Solar Array (assumed in parallel)

L = 1, MFINAL

Where: Il(L) = Electrical Circuit Current - Amperes at V2(L)

I2(L) = .Solar Array Current - Amperes
at V2(L)

V2(L) = Circuit or Array Voltage - Volts

Step 66 Obtain Voltage Data for Calculation of Solar Array Maximum Power Plant

XV = Initial Voltage for Max Power Point Calculations - Volts

DXN = Voltage Increment for Max Power Point Calculation - Volts

Step 67 Initialize Calculation Value of Solar Array Maximum Power

MSAPWR = 0.0

Where: MSAPWR = Solar Array Maximum Power - Watts

Step 68 Calculate Solar Array Power and Current

 $XI = F\{I2(L), V2(L)\}$ at V2(L) = XV

SAPWR = XI * XV

Where: XV = Solar Array Voltage - Volts

XI = Solar Array Current - Amperes

SAPWR = Solar Array Power - Watts

Step 69 Compare Solar Array Power With Maximum Power

IF: SAPWH > MSAPWR THEN: MSAPWR = SAPWR XV = XV + DXV

REPEAT STEP 68 UNTIL: SAFWR < MSAPWR

Step 70 Recalculate Solar Array Current and Power

MSAPWR = 0.0

XV = XV - DXV

REPEAT STEP 68 ONLY

Step 71 Compare Solar Array Power With Maximum Power

THEN: SAPWR > MSAPWR
MSAPWR = SAPWR
DXV = DXV/10.0
XV = XV + DXV

REPEAT STEP 68 ONLY UNTIL: SAPWR < MSAPWR

Step 72 Calculate Solar Array Maximum Power Point Characteristics

MAXV = XV - DXV

MAXI = MSAPWR/MAXV

Where: MAXV = Solar Array Voltage at Max Power Point - Volts

MAXI = Solar Array Current at Max Power Point - Amperes

Step 73 Obtain Solar Array Electrical Section Cable Resistance

RSA = Series resistance of cable for an electrical section of the solar array - Ohms

Step 74 Calculate Voltage Shift in Electrical Section Voltage Due to Cable Resistance and Blocking Diodes

VDIODE = AD1 {I1(L)}

V2(L) = V2(L) - (I1(L) * RSA) - VDIODE

L = 1, MFINAL

Where: VDIODE = Electrical Section Blocking Diode - Volts
Voltage Drop at Current Level I1(L)

AD1 = Table (Input Data) of Electrical Section Blocking Diode as a function of current

Step 75 Obtain Shunt Limiter Type

ISH = Shunt Limiter Type

0 = None

1 = Ordinary Zener Diode

2 = Temperature Compensated Zener Diode

3 = Active Shunt Limiter

Step 76 Obtain Shunt Limiter Current Voltage Characteristics

ZI(I) = Shunt Limiter Current at ZV(I) - Amperes

ZV(I) = Shunt Limiter Voltage - Volts

I = 1, 20

Step 77 Obtain Power Source Group Type

IPSG = Power Source Group Type

0 = One Shunt Limiter for the Solar Array

Step 78 Select Power Source Group Current-Voltage Calculation and Calculate Significant Voltages

VZSB = ZV(2)

SAOCV = V2(MFINAL)

IF: ISH = 0; GO TO STEP 79

IF: ISH = 1; GO TO STEP 80

IF: ISH = 2; GO TO STEP 98

IF: ISH = 3; GO TO STEP 80

Where: VZSB = Shunt-Limiter Turn-On Voltage - Volts

SAOCV = Solar Array Open Circuit Voltage - Volts

Step 79 Calculate Power Source Group Current-Voltage Characteristics (With No Shunt-Limiter)

XZI(L) = ZI(1)

SY(L) = I2(L) - XZI(L)

SX(L) = V2(L)

L = 1, MFINAL

Where: XZI(L) = Shunt Limiter Current at SX(L) - Amperes

SY(L) = Power Source Group Current at SY(L) - Amperes

SX(L) = Power Source Group Voltage - Volts

Return to Performance Analysis Routine

Step 80 Select PSG Current-Voltage Calculation Based on PSG Type

IF: IPSG = 0; GO TO STEP 81

IF: IPSG = 1; GO TO STEP 89

Step 81 Initialize Index Counter and PSG Voltage and Current

LL = 1

SY(1) = 0.0

 $SX(1) = F\{I2(L), V2(L)\}$ at V2(L) = SX(1)

XZI(1) = 0.0

Step 82 Compare Voltage and Current to Reference Levels

IF: $SY(LL) \leq 0.0$: and

IF: SX(LL) > SAOCV THEN: GO TO STEP 88

Step 83 Increment Index Counter and Calculate PSG Voltage and Current

LL = LL + 1

SX(LL) = SX(LL - 1) + VSAINC

 $SY(LL) = F\{I2(L), V2(L)\}$ at V2(L) = SX(LL)

XZI(LL) = 0.0

Step 84 Compare PSG Voltage with Shunt-Limiter Turn-On Voltage

IF: SX(LL) < VZSB:

THEN: REPEAT STEPS 82 AND 83

Step 85 Calculate PSG Current at Shunt Limiter Turn-On SX(LL) = VZSB $SY(LL) = F\{I2(L), V2(L)\}$ at V2(L) = SX(LL) $XZI(LL) = F\{ZI(I), ZV(I)\}$ at ZV(I) = SX(LL)SY(LL) = SY(LL) - XZI(LL)Compare PSG Current With Reference Step 86 SY(LL) < 0.0IF: THEN: GO TO STEP 88 Increment Index Counter and Calculate PSG Voltage and Current Step 87 LL = LL + 1SX(LL) = SX(LL - 1) + 0.01 $SY(LL) = F\{I2(L), V2(L)\}$ at V2(L) = SX(LL) $XZI(LL) = F\{ZI(I), ZV(I)\}$ at ZV(I) = SX(LL)SY(LL) = SY(LL) - XZI(LL)REPEAT STEPS 86 AND 87 Step 88 Calculate Maximum PSG Voltage Perform a Straight-Line Interpolation between the last two sets of PSG current-voltage valves to predict the voltage at which the PSG current is equal to zero (VZCR) SX(LL) = VZCR SY(LL) = 0.0XZI(LL) = F(ZI(I), ZV(I)) at ZV(I) = SX(LL)NFINAL = LL RETURN TO PERFORMANCE ANALYSIS ROUTINE

Step 89 Initialize Index Counter and Section Voltage and Current

LL = 1

VSECT(1) = 0.0

 $ISECT(1) = F{I1(L), V2(L)}$ at V2(L) = VSECT(1)

XZIS = 0.0

Where: ISECT(LL) = Electrical Section Composite Current - Amperes

at VSECT(LL)

VSECT(LL) = Electrical Section Voltage - Volts

XZIS(LL) = Shunt Limiter Section Current - Amperes

Compare Voltage and Current to Reference Levels Step 90

> ISECT(LL) < 0.0 and IF:

VSECT(LL) > SAGCV;

THEN: GO TO STEP 96

Increment Index Counter and Calculate Section Composite Voltage Step 91

and Current

LL = LL + 1

VSECT(LL) = VSECT (LL - 1) + VSAINC

 $ISECT(LL) = F{II(L), V2(L)}$ at V2(L) = VSECT(LL)

XZIS(LL) = 0.0

Compare Section Voltage with Shunt Limiter Turn-On Voltage Step 92

> VSECT(LL) < VZSB: IF:

THEN: REPEAT STEPS 90 AND 91

```
Calculate Section Current at Shunt Limiter Turn-On
Step 93
           VSECT(LL) = VZSB
            ISECT(LL) = F{I1(L), V2(L)} at V2(L) = VSECT(LL)
            XZIS(LL) = F{ZI(I), ZV(I)} at ZV(I) = VSECT(LL)
            ISECT(LL) = ISECT(LL) - XZIS(LL)
           Compare Section Current With Reference
Step 94
            IF:
                  ISECT(LL) < 0.0
           THEN: GO TO STEP 96
Step 95
           Increment Index Counter and Calculate Section Voltage and Current
                  LL = LL + 1
           VSECT(LL) = VSECT(LL - 1) + 0.01
            ISECT(LL) = F{II(L), V2(L)} at V2(L) = VSECT(LL)
            XZIS(LL) = F{ZI(I), ZV(I)} at ZV(I) = VSECT(LL)
            ISECT(LL) = ISECT(LL) - XZIS(LL)
            REPEAT STEPS 94 AND 95
Step 96
            Calculate Maximum Section Voltage
            Perform a straight-line interpolation between the last two sets
            of section current-voltage values to predict the voltage at which
            the section current is equal to zero (VZCR)
            VSECT(LL) = VZCR
            ISECT(LL) = 0.0
            XZIS(LL) = F\{ZI(I), ZV(I)\} at ZV(I) = YSECT(LL)
               NFINAL = LL
```

<u>Step 97</u>	Calculate PSG Current Voltage Characteristics
	SY(LL) = ISECT(LL) * NESP
	XZI(LL) = XZIS(LL) * NESP
	SX(LL) = VSECT(LL)
	LL = 1, NFINAL
	RETURN TO PERFORMANCE ANALYSIS ROUTINE
Step 98	Select PSG Current Voltage Type Based on PSG Type
	$\underline{\text{IF:}} \text{IPSG = 0; GO TO STEP 99}$
	$\underline{\text{IF}}$: IPSG = 1; GO TO STEP 108
<u>Step 99</u>	Initialize Index Counter and PSG Voltage and Current
	LL = 1
	SX(1) = 0.0
	$SY(1) = F\{I2(L), V2(L)\}$ at $V2(L) = SX(1)$
	XZI(1) = 0.0
<u>Step 100</u>	Compare Voltage and Current to Reference Levels
	IF: $SY(LL) \leq 0.0$; and
	IF: SX(LL) > SAOCV: THEN: GO TO STEP 107
Step 101	Increment Index Counter and Calculate PSG Voltage and Current
	LL = LL + 1
	SX(LL) = SX(LL - 1) + VSAINC
	$SY(LL) = F\{I2(L), V2(L)\}$ at $V2(L) = SX(LL)$
	XZI(LL) = 0.0

Step 102 Compare PSG Voltage With Shunt-Limiter Turn-On Voltage

IF: SX(LL) < VZSB;

THEN: REPEAT STEPS 100 AND 101

Step 103 Calculate PSG Current at Shunt-Limiter Turn-On

SX(LL) = VZSB

 $SY(LL) = F\{I2(L), V2(L)\}$ at V2(L) = SX(LL)

 $XZI(LL) = F\{ZI(I), ZV(I)\}$ at ZV(I) = SX(LL)

SY(LL) = SY(LL) - XZI(LL)

Step 104 Compare PSG Current with Reference

IF: SY(LL) < 0.0 THEN: GO TO STEP 107

Step 105 Calculate Zener String Voltage Increment

VZINC = ZV(4) - ZV(3)

VZINC = Zener String Voltage Increment - Volts beyond Zener Breakdown Voltage

Step 106 Increment Index Counter and Calculate PSG Voltage and Current

LL = LL + 1

SX(LL) = SX(LL - 1) + VZINC

 $SY(LL) = F\{I2(L), V2(L)\}$ at V2(L) = SX(LL)

 $XZI(LL) = F{ZI(I), ZV(I)}$ at ZV(I) = SX(LL)

SY(LL) = SY(LL) - XZI(LL)

REPEAT STEPS 104, 105 AND 106

Step 107 Calculate Maximum PSG Voltage

Perform a straight-line interpolation between the last two sets of PSG Current-Voltage values to predict the voltage at which the PSG current is equal to zero (VZCR)

SX(LL) = VZCR

SY(LL) = 0.0

 $XZI(LL) = F{ZI(I), ZV(I)}$ at ZV(I) = SX(LL)

NFINAL = LL

RETURN TO PERFORMANCE ANALYSIS ROUTINE

Step 108 Initialize Index Counter and Section Voltage and Current

LL = 1

VSECT(1) = 0.0

 $ISECT(1) = F{II(L), V2(L)}$ at V2(L) = VSECT(1)

XZIS(1) = 0.0

Step 109 Compare Voltage and Current to Reference Levels

IF: ISECT(LL) < 0.0; and

IF: VSECT(LL) > SAOCV;

THEN: GO TO STEP 116

Step 110 Increment Index Counter and Calculate Section Composite Voltage and Current

LL = LL + 1

VSECT(LL) = VSECT(LL - 1) + VSAINC

ISECT(LL) = F(II(L), V2(L)) at V2(L) = VSECT(LL)

XZIS(LL) = 0.0

Compare Section Voltage With Shunt Limiter Turn-On Voltage Step 111 IF: VSECT(LL) < VZSB; THEN: REPEAT STEPS 109 AND 110 Calculate Section Current at Shunt Limter Turn-On Step 112 VSECT(LL) = VZSB $ISECT(LL) = F{I1(L), V2(L)}$ at V2(L) = VSECT(LL) $XZIS(LL) = F{ZI(I), ZV(I)}$ at ZV(I) = VSECT(LL)ISECT(LL) = ISECT(LL) - XZIS(LL) Compare Section Current With Reference Step 113 ISECT(LL) < 0.0 IF: THEN: GO TO STEP 116 St 114 Calculate Zener String Voltage Increment VZINC = ZV(4) - ZV(3)Increment Index Counter and Calculate Section Voltage and Current Step 115 LL = LL + 1VSECT(LL) = VSECT(LL - 1) + VZINC $ISECT(LL) = F{I1(L), V2(L)}$ at V2(L) = VSECT(LL) $XZIS(LL) = F\{ZI(I), ZV(I)\}$ at ZV(I) = VSECT(LL)

ISECT(LL) = ISECT(LL) - XZIS(LL)

REPEAT STEPS 113, 114 AND 115

Step 116 Calculate Maximum Section Voltage Perform a straight-line interpolation between the last two sets of section current-voltage values to predict the voltage at which section current is equal to zero (VZCR) VSECT(LL) = VZCRISECT(LL) = 0.0 $XZIS(LL) = F\{ZI(I), ZV(I)\}$ at ZV(I) = VSECT(LL)NFINAL = LL Calculate PSG Current Voltage Characteristics Step 117 SY(LL) = ISECT(LL) * NESP XZI(LL) = XZIS(LL) * NESP SX(LL) = VSECT(LL)LL = 1, NFINAL Return to Performance Analysis Routine Step 118 Calculate Occultation Conditions for Solar Insolation QDN = 0.0QD = 0.0QDG = 0.0QDS = 0.0QDT = 0.0Where: QDN = Direct, Normal Solar Insolation at Bucy Location - Watts/M2 QD = Direct Solar Insolation Incident on Solar Array - Watts/H2 QDG = Horizontal Surface Diffuse Insolation Incident on Solar Array - Watts/M2 QDS = Sky Diffuse Insolation Incident on Solar Array - Wotts/M QDT = Total Solar Insolation Incident on Solar Array - Watts/M2

Step 118a Calculate Solar Array Maximum Power MSAPWR = 0.0Obtain Solar Array Parameters Step 119 VSAINC = Solar Array Voltage Increment - Volts EFINAL = Maximum extent of PSG group Current-Voltage Characteristics Matrix Step 120 Calculate PSG Current-Voltage Characteristics SY(1) = 0.0XZI(1) = 0.0SX(1) = 0.0 (INITIALIZATION) SY(LL) = 0.0 XZI(LL) = 0.0SX(LL) = SX(LL - 1) + VSAINCLL = 1, KFINAL RETURN TO PERFORMANCE ANALYSIS ROUTINE

4.1.1 Shunt Limiters

The Shunt Limiter routine allows the user to specify whether an active shunt limiter, an ordinary zener diode, a temperature-compensated zener diode, or no shunting device will be used in conjunction with the solar array. The shunt device selected will not influence the solar array performance until prevailing conditions require the limiting of the array voltage. The array voltage is then clamped at a maximum potential, altering the Power Source Group current-voltage characteristics. The combined solar array/shunt limiter performance curve is the algebraic difference between the solar array and the array limiter characteristics.

PROGRAM ALGORITHMS

Step 1 Obtain Shunt Limiter Type

ISH = Shunt Limiter Type

0 = No Shunt Limiter

1 = Ordinary Zener Diode

2 = Temperature Compensated Zener Diode

3 = Active Shunt Limiter

Step 2 Select Shunt Limiter Current-Voltage Characteristics

If: ISH = 0; GO TO STEP 3

If: ISH = 1; GO TO STEP 4

If: ISH = 2; GO TO STEP 5

If: ISH = 3; GO TO STEP 6

Step 3 Calculate No-Shunt Limiter Current Voltage Characteristics FOR I = 1, 20ZI(I) = 0.0ZV(I) = 0.0Where: ZI(I) = Shunt Limiter Current at ZV(I) - Amperes ZV(I) = Shunt Limiter Voltage - Volts RETURN TO POWER SOURCES GROUP ROUTINE Obtain Ordinary Zener Diode Current-Voltage Characteristics Step 4 ZI(I); ZV(I) For I = 1.20RETURN TO POWER SOURCES GROUP ROUTINE Step 5 Obtain Temperature Compensated Zener Diode Current-Voltage Characteristics For I = 1, 20: ZI(I); ZV(I) RETURN TO POWER SOURCES GROUP ROUTINE Obtain Active Shunt Limiter Current-Voltage Characteristics Step 6 For I = 1, 20: ZI(I); ZV(I) RETURN TO POWER SOURCES GROUP ROUTINE

ORDINARY ZENER DIODE

For the Initial Load Line Analysis Calculation go to Step 1

For Subsequent Load Line Analysis Calculations go to Step 3

Step 1 Obtain Zener Diode Operational Requirements

VZBR = Breakdown Voltage of a Single Zener Diode - Volts
 (at TZBR)

TZBR = Temperature of Zener Diode - °C (at Breakdown Voltage)

Step 2 Calculate Zener Diode Breakdown Voltage at Reference Temperature

Iterate the following equations until the change in Zener breakdown voltage at reference temperature is less than 0.1 volts. The number of iterations shall not exceed 15.

 $VZB3C = VZBR * \left[1.0 - \frac{TC * (TZBR - 30.0)}{100} \right]$

 $TC = ZTCOEF \{VZB30\}$

Where: VZB30 = Zener diode breakdown voltage at 30°C - Volts

TC = Zener diode temperature coefficient (%/°C) as a

function of VZB30

ZTCOEF = Input table of TC as a function of VZB30

Step 3 Obtain Solar Array Temperature

TSAC = Solar Array Temperature - Centigrade

Step 4 Calculate Zener Diode Operating Temperature

TJZ1 = TSAC

Where: TJZ1 = Zener Diode Operating Temperature - °C

Step 5 Calculate Zener Diode Breakdown Voltage

$$VZB = VZB30 * \left[1.0 + \frac{TC * (TJZ1 - 30.0)}{100.0} \right]$$

 $TC = ZTCOEF \{VZB30\}$

Where: VZB = Single Zener Diode Breakdown Voltage - Volts at TJZI

Step 6 Obtain Number of Zener Diodes in a String

NZS = Number of Zener Diodes in Series

Step 7 Calculate Zener String Breakdown Voltage

VZSB = VZB * NZS

Where: VZSB = Zener String Breakdown Voltage - Volts

Step 8 Calculate Zener Diode Dynamic Impedance

 $ZZ = ZDIMP \{TJZ1, VZB30\}$

Where: ZDIMP = Input Table of ZZ as a function of TJZ1 and VZB30

Step 9 Calculate Zener Diode Current-Volatge Characteristics

ZI(I) = Zener Diode Current - Amperes
at ZV(I)

ZV(I) = Zener Diode Voltage - Volts

I = 1, 20

Step 9 (contd)

as follows:

- a) For I = 1
 - ZI(I) = 0.0
 - ZV(I) = 0.0
- b) For I = 2
 - ZI(2) = 0.0
 - ZV(2) = VZSB
- c) For I = 3
 - ZI(3) = 100.0
 - ZV(3) = VZSB + ZI(3) * ZZ * NZS
- d) For I = 4, 20
 - ZI(I) = 0.0
 - ZV(I) = 0.0

Step 10 RETURN TO GENERAL SHUNT LIMITER ROUTINE

TEMPERATURE COMPENSATED ZENER DIODE

For the Initial Load Line Analyses Begin at Step 1

For Subsequent Load Line Analyses Begin at Step 5

Step 1 Obtain Zener Diode Operational Requirements

NZS = Number of Zener diodes in series in a string

HDZMX = Maximum Heat Dissipation of a single zener diode - Watts

HDER = Heat Dissipation Derating Factor for a single zener diode

Step 2 Calculate Reference Zener Power

PZRF25 = HDER * HDZMX

Where: PZRF25 = Zener diode power at 25°C - Watts

Step 3 Calculate Reference Zener Current

IZRF25 = CURZ {HDZMX}

Where: IZRF25 = Zener Diode Current at 25°C - Watts

CURZ = Input Table of IZRF25 as a function of HDZMX

Step 4 Calculate Reference Zener Voltage

VZRF25 = PZRF25/IZRF25

Where: VZRF25 = Zener Diode Voltage at 25°C - Volts

Step 5 Obtain Solar Array Temperature

TSAC = Solar Array Temperature - °C

Step 6 Calculate Zener Diode Operating Temperature

TCZ = TSAC

Where: TCZ = Zener Diode Operating Temperature - °C

Step 7 Calculate Zener Diode Breakdown Voltage Ratio as follows:

a). Given the formulation:

RATI = TCZIV{RATV, TCZ}

Where: RATI = Zener Diode Current Ratio at RATV and TCV

RATV = Zener Diode Voltage Ratio

TCZIV = Input table of Zener diode current-voltage

characteristics (RATI, RATV) as a function of TCV

b) Then:

RATVB = RATV: when; RATI = 0.0

Where: RATVB = Zener Diode Breakdown Voltage Ratio

Calculate Voltage Ratio Increment Size Step 8

RTVINC = $1.05 - \frac{RATVB}{18.0}$

Step 9 Calculate Zener Diode Current Ratio-Voltage Ratio Characteristics

RIZ(J) = Zener Diode Current Ratio at RVZ(J)

RVZ(J) = Zener Diode Voltage Ratio

J = 1, 20

as follows:

a) For J = 1

RIZ(1) = 0.0

RVZ(1) = 0.0

Step 9 (contd)

b) For J = 2

RIZ(2) = 0.0

RVZ(2) = RATVB

c) For J = 3, 20: Repeat Step 80; 18 times

RVZ(J) = RVZ(J - 1) + RTVINC

RATV = RVZ(J)

RATI = TCZIV{RATV, TCZ}

RIZ(J) = RATI

J = J + 1

Step 10 Calculate Zener Diode String Current Voltage Characteristics

ZI(J) = Zener Diode Current at <math>ZV(J) - Amperes

ZV(J) = Zener Diode String Voltage - Volts

J = 1, 20

as follows:

ZI(J) = IZRF25 * RIZ(J)

ZV(J) = NZS * VZRF25 * RVZ(J)

Step 11 RETURN TO GENERAL SHUNT LIMITER ROUTINE

ACTIVE SHUNT LIMITER

Step 1 Obtain Shunt Limiter Operational Requirements

TSAC = Solar Array Temperature - °C

VSHTOR = Required Shunt Limiter Turn-On Voltage - Volts

TSHREF = Shunt-Limiter Reference Temperature - °3

CSH = Shunt-Limiter Turn-On Voltage Coefficient - %/°C

Step 2 Calculate Shunt Limiter Operating Temperature

TSH = TSAC

Where: TSH = Shunt Limiter Operating Temperature

Step 3 Calculate Shunt Limiter Turn-On Voltage

VSHTO = VSHTOR 1.0 + CSH * (TSH - TSHREF)

Where: VSHTO = Shunt Limiter Turn-On Voltage - Volts (at TSH)

Step 4 Calculate Shunt Limiter Dynamic Impedance

 $ZSH = ZSHTAB\{TSH\}$

Where: ZSH = Shunt Limiter Dynamic Impedance - Ohms

ZSHTAB = Input Table of ZSH as a function of TSH

Step 5 Calculate Shunt Limiter Current Veltage Characteristics ZI(I) = Shunt Limiter Current - Amperes ZV(I) = Shunt Limiter Voltage - Volts I = 1, 3 as follows: a) For I = 1 ZI(1) = 0.0 ZV(1) = 0.0

- b) For I = 2 ZI(2) = 0.0 ZV(2) = VSHTO
- c) For I = 3 ZI(3) = 100.0 ZV(3) = VSHTO + ZI(3) * ZSH
- d) For I = 4, 20 ZI(I) = 0.0 ZV(I) = 0.0

Step 6 RETURN TO GENERAL SHUNT LIMITER ROUTINE

4.2 Energy Storage Group

The Energy Storage Group is made up of the buoy batteries, the battery cables, the battery chargers and the battery discharge diodes. The characteristics of these elements are consolidated as a function of the battery states-of-charge, temperature, number of series cells, cable resistance, and battery charge rate and are then expressed as a single set of current-voltage characteristics at the unregulated bus operating point.

The Energy Storage Group algorithms access a comprehensive set of battery charge and discharge data that are ordered in specific battery operating states and temperatures. The battery data are in the form of current-voltage curves at specified temperatures and depths of discharge. A total of 21 curves are available for each of six temperatures, 126 curves in all.

PROGRAM ALGORITHMS

Step 1 Obtain Battery Charger Type

ICHRT = Battery Charger Type

0 = No Charger

1 = Constant Voltage Charger with Current Limit

IF: This is Initial Load Line Analysis:

THEN: GO TO STEP 2

IF: This is Subsequent Load Line Analysis:

THEN: GO TO STEP 3

Step 2	Obtain Battery Characteristics
	DTTESG = Energy Storage Group Temperature Rise - °F
	NBATT = Number of Batteries in Parallel
	CB = Capacity of each Battery - ampere-hours
	XN = Number of Cells in series in each Battery
	RL = Resistance of Cable Connected to each Battery - Ohms
	XICHMX = Maximum Allowable Battery Charge Current - Amperes
Step 3	Obtain Ambient Temperature
	TTAMB = Ambient Temperature at Selected Location - °F
Step 4	Calculate Energy Storage Group Temperature
	TTESG = TTAMB + DTTESG
ı	Where: TTESG = Energy Storage Group Temperature - °F
Step 5	Obtain Battery State-of-Charge
	QB = State of Charge of each Battery
Step 6	Calculate Battery Current-Voltage Characteristics
	$BRR(J,K,L) = BCQT\{VCC(J,K,L), QBB(K), TBB(L)\}$
	VC(J) = VCC(J,K,L) at QBB = QB and TBB = TTESG
	BR(J) = BRR(J,K,L) at $VCC = VC(J)$, $QBB = QB$, and $TBB = TTESG$
	VB(J) = VC(J) + XN

```
Step 6 (Contd)
              XIB(J) = BR(J) * CB
                   J = 1, 9 (Data Points)
                   K = 1, NQBB
                   L = 1, NTBB
          Where: BRR = Normalized Battery Current Rate (expressed as ratio of
                        battery current (amperes) to battery capacity
                        (ampere-hours)) - Hours
                  VCC = Cell Voltage - VDC
                  QBB = Battery State-of-Charge
                  TBB = Battery Temperature - °F
                 BCQT = Input Table of BRR as a function of VCC, QBB and TBB
                 NQBB = Number of QBB entries in BCQT
                 NTBB = Number of TBB entries in BCQT
                VC(J) = Cell Yoltage for each Battery - VDC
                VB(J) = Battery Voltage for each battery - VDC
                BR(J) = Normalized Battery Current for each Battery - Hours
               XIB(J) = Battery Current for each Battery - Hours -1
          Calculate Effect of Parasitic Losses
Step 7
                 XIB(J) > 0.0
          THEN: VBM(J) = VB(J) + RL * XIB(J)
                 XIB(J) < 0.0
          THEN: VBM(J) = VB(J) - VDIODE - RL * |XIB(J)|
                VDIODE = AD2\{|XIB(J)|\}
          Where: VBM = Modified Battery Voltage for each Battery - VDC
               VDIODE = Battery Discharge Blocking Diode Voltage Drop - VDC
                  AD2 = Input Table of VDIODE as a function of battery
                        discharge current
                    J = 1, 9
```

```
Step 7 (Contd)
          IF:
                 ICHRT = 1
          THEN: GO TO STEP 17
          Rearrange Modified Battery Voltage Data into One Array in Ascending
Step 3
          TRESLT(J,1) = F{VBM(J)} (in ascending order)
                     J = 1, 9
          Where: TRESLT(J,1) = Energy Storage Group Voltage - VDC
          Initialize Counter and Special Voltage Array
Step 9
                  LL = 1
                  LY = 1
          TRESVT(LY) = TRESLT(LL,1)
          Where: TRESVT = Special Voltage Array for ES Group - VDC
                      LY = Remaining Number of Modified Voltage Points
Step 10
         Index Counter and Compare Voltage Differences
          LL # LL + 1
                  (TRESLT(LL,1) - TRESLT((LL-1),1) < 0.01
          IF:
          THEN:
                  REPEAT STEP 10
Step 11
          Index Counter and Calculate Values in Special Voltage Array
                  LY = LY + 1
          TRESVI'(LY) = TRESLIT(LL,1)
                LL > 9
          THEN: GO TO STEP 12
          REPEAT STEPS 10 AND 11
         Calculate Revisions to Energy Storage Group Voltage
Step 12
          TRESLT(LL,1) = 0.0
                   LL = 1,9
         TRESLT(LY,1) = TRESVT(LY)
                   LY = 1,9
```

```
Step 13 Calculate Individual Battery Voltage
          TRESV(LY) = TRESLT(LY,1)
                LY = 1.9
          Where: TRESV = Individual Battery Voltage - VDC
Step 14
         Calculate Average Battery Cell Voltages
          VCM(J) = VCM(J)/XN
              J = 1.9
          Where: VCM = Modified Average Cell Voltage - VDC
         Calculate Individual Battery Current
Step 15
          TRESI(J) = F\{XIB(J), VCM(J)\} at values of VCM(J) = TRESV(J)/XN
                 J = 1,9
          Where: TRESI = Individual Battery Current - Amperes
Step 16
         Calculate Total Battery Current
          TRESLT(LY,2) = TRESI(LY) * NBATT
                   LY = 1.9
          Where: TRESLT(LY,2) = Energy Storage Group Current - Amperes
                                at TRESLT(LY,1)
                 TRESLT(LY,1) = Energy Storage Group Voltage - VDC
         RETURN TO PERFORMANCE ANALYSIS ROUTINE
Step 17
         Enlarge Modified Current-Voltage Characteristic Array
          XIBBM(JJ) = XIB(J)
          VBEM(JJ) = VBM(J)
                JJ = J
                 J = 1.9
         But, allow for an extra location so that (JJ) = 10
```

Step 18 Insert Battery Voltage Corresponding to Maximum Allowable Battery Current (XICHEIX) into Modified Current-Voltage Characteristic Array such that the array contains I-V data for that point.

Thus,

VBBM(JJ) = Modified Battery Voltage for each Battery - VDC

JJ = 1,10

Step 19 Obtain Battery Charger Reference Voltages

VCHIO = VCHIOT{TTESG}

VCHISA = VCHIST{TTESG}

Where: VCHIO = Battery Charger Input Voltage at Turn-On - VDC (Minimum Voltage Drop at Zero Current Level)

VCHISA = Battery Charger Input Voltage - VDC at which operation changes from "saturated" to

"active" conditions

VCHIOT = Input table of VCHIO as a function of TTESG

VCHIST = Input table of VCHISA as a function of TTESG

Step 20 Obtain Battery Charger Impedance

ZCHRS = ZCHRST{TTESG}

ZCHRA = ZCHRSA{TTESG}

Where: ZCHRS = Output Impedance of Battery Charger in "saturated" condition - Ohms

ZCHRA = Output Impedance of Battery Charger in "active" condition - Ohms

ZCHRST = Input Table of ZCHRS as a function of TTESG

ZCHRAT = Input Table of ZCHRA as a function of TTESG

Step 21 Obtain Battery Charger Impedance

ZCHRS = ZCHRST(TTESG)

ZCHRA = ZCHRSA{TTESG}

```
Step 21 (Cont)
          Where: ZCHRS = Output Impedance of Battery Charger in "saturated"
                          condition - Ohms
                  ZCHRA = Output Impedance of Battery Charger in "active"
                          condition - Ohms
                 ZCHRST = Input Table of ZCHRS as a function of TTESG
                 MCHRAT = Input Table of ZCHRA as a function of TTESG
Step 23
         Initialize Counter
         JJ = 1
          Calculate Energy Storage Unit Discharge I-V Chracteristics and Then
Step 24
          Increment Counter
                 XIBBM(JJ) > 0.0
          THEN: GO TO STEP 25
          VESI(JJ) = VBBM(JJ)
          XIEST(JJ) = XIBBM(JJ)
                 JJ = JJ + 1
          Where: VESI(JJ) = Energy Storage Unit Input Voltage - VDC
                 XIESI(JJ) = Energy Storage Unit Input Current
                             (Corresponding to VESI(JJ)) - Amperes
          Repeat Step 24
Step 25
          Compare Power Sources Group Maximum Voltage with Reference Voltages
                 (VPSGMX) > (VCHIO + VBBM(JJ))
          THEN: GO TO STEP 28
          Calculate Energy Storage Unit Charge I-V Characteristics and
Step 26
          Increment Counter
                 JJ > 10
          THEN: GO TO STEP 27
          VESI(JJ) = VBRH(JJ)
          XIESI(JJ) = 0.0
          REPEAT STEP 26
```

Step 28 Calculate Estimate of Charger Input Voltage

VCHOOS = VBBM(JJ) + XIBBM(JJ) * ZCHRS

VESS = VCHOOS + VCHIO

IF: VESS > VCHISA
THEN: GO TO STEP 30

Where: VCHOOS = Battery Charger Output Voltage (in "saturated"

condition) at zero current - VDC

VESS = Estimate of Battery Charger Input Voltage in

"saturated" condition - VDC

Step 29 Calculate Energy Storage Unit Charge I-V Characteristics and

Increment Counter

<u>IF</u>: JJ > 10

THEN: GO TO STEP 27

XIESI(JJ) = XIBBM(JJ)

VESI(JJ) = VESS

JJ = JJ + 1

RETURN TO STEP 28

Step 30 Calculate Estimate of Charger Input Voltage

VCHOOA = VBBM(JJ) + XIBBM(JJ) * ZCHRA

VESA = VCHIT{VCHOOA,TTESG}

Where: VCHOOA = Battery Charger Output Voltage (in "active"

condition) at zero current - VDC

VESA = Estimate of Battery Charger Input Voltage in

"active" condition - VDC

VCHIT = Input Table of VESA as a function of VCHOOA and

TTESG

Step 31 Calculate Energy Storage Unit Charge I-V Characteristics and

Increment Counter

<u>IF</u>: JJ > 10

THEN: GO TO STEP 27

```
Step 31 (Contd)
          XIESI(JJ) = XIBBM(JJ)
           VESI(JJ) = VESA
                JJ = JJ + 1
         RETURN TO STEP 30
Step 32 Compare Battery Charger Input Current with Reference Current Limit
                XIESI(JJ) > XICHAX
          THEN: XIESI(JJ) = XICHAX
          JJ = 1,10
         Rearrange Energy Storage Unit Voltage Data into One Array in
<u>Step 33</u>
          Ascending Order
          TRESLT(JJ,1) = F{VESI(JJ)} (in ascending order)
                    JJ = 1, 10
         Initialize Counter and Special Voltage Array
Step 34
                  LL = 1
                  LY = 1
          TRESVT(LY) = TRESLT(LL,1)
Step 35
         Index Counter and Compare Voltage Differences
          LL = LL + 1
          IF:
                 |(TRESLT(LL,1) - TRESLT((LL - 1),1)| < 0.01
          THEN:
                REPEAT STEP 35
Step 36
         Index Counter and Calculate Values in Special Voltage Array
                  LY = LY + 1
          TRESVT(LY) = TRESLT(LL,1)
                LL > 10
          THEN: GO TO STEP 37
          REPEAT STEPS 35 AND 36
```

```
Step 37 Calculate Revisions to Energy Storage Group Voltage
          TRESLT(LL,1) = 0.0
                    LL = 1,10
          TRESLT(LY,1) = TRESVT(LY)
                   LY = 1,10
Step 38 Calculate Individual Energy Storage Unit Voltage
          TRESV(LY) = TRESLT(LY,1)
                 LY = 1,10
         Calculate Energy Storage Unit Equivalent Single Cell Voltage
Step 39
          VESIC(JJ) = VESI(JJ)/XN
                JJ = 1,10
          Where: VESIC = Equivalent Single Cell Voltage of an Energy Storage
                          Unit - VDC
Step 40 Calculate Energy Storage Unit Current
         TRESI(LY) = F\{XIESI(JJ), VESIC(JJ)\}
          At values of: VESIC(JJ) = TRESV(LY)/XN
                               JJ = 1,10
                               LY = 1,10
Step 41
         Calculate Total Energy Storage Group Current
         TRESLT(LY,2) = TRESI(LY) * NBATT
                   LY = 1,10
```

RETURN TO PERFORMANCE ANALYSIS ROUTINE

4.3 Power Conditioning and Distribution Group

The Power Conditioning and Distribution Group is made up of two sub-assemblies: the Lamp Flasher and the Housekeeping Regulator. The characteristics of the subassemblies are computed as a function of the lamp flasher pattern and the lamp flasher condition (on, off, or flashing). These characteristics are then shifted for the combined effects of wiring and connector series resistance to give a single set of current-voltage curves at the unregulated bus.

PROGRAM ALGORITHMS

For the Initial Load Line Analysis, GO TO STEP 1

For Subsequent Load Line Analysis, GO TO STEP 13

Step 1 Obtain Flasher Pattern Type

<u>IF</u>: IFTYPE = 0, GO TO STEP 3

Where: IFTYPE = Type of flasher pattern

IFTYPE = 0: Non-Standard Pattern

IFTYPE > 0: Standard Pattern

Step 2 Calculate Standard Flasher Pattern

 $TL1(J) = TLO(IFTYPE_{J})$

(1 ≤ IFTYPE ≤ 15) (15 standard pattern types)

 $(1 \le J \le 16)$ {Up to 16 steps per pattern} Alternate On/Off

Where: TLO(IFTYPE,J) = Input table containing the patterns exhibited by the Standard Lamp Fiashers

TL1 = Selected Lamp Flasher Pattern

GO TO STEP 4

Step 3 Calculate Non-Standard Flasher Pattern

 $TL1(J) = TLL1(J) \qquad (1 < J \le 16)$

Where: TLL1(J) = Input data containing up to 16 alternate on-off steps for the Non-Standard Flasher Pattern

Step 4 Calculate Total Duration of Lamp Illumination and Lamp Shut-Off

TLON =
$$\sum_{J=1,3,5...}^{15}$$
 TL1(J)

TLOFF =
$$\sum_{J=2,4,6...}^{16} TL1(J)$$

Where: TLON = Total duration of lamp illumination

in a single flasher period

TLOFF = Total duration of lamp shut-off

 $\underline{\text{IF}}$: TLON \leq 0 and TLOFF \leq 0 stop program and

Print: "No flasher pattern entries"

Step 5 Calculate Lamp Duty Cycle

DL = TLON/(TLON + TLOFF)

Where: DL = Lamp Duty Cycle

Step 6 Obtain Lamp Characteristics

VLR = Lamp Voltage Rating - VDC

CLR = Lamp Current Rating - Amperes

CLS = Cold-Filament Lamp Surge Coefficient

Step 7 Calculate Actual Lamp Current

IL = CLS *CLR

Where: IL = Actual Lamp Current -Amperes

Note: IF: DL = 1.0

THEN: CLS = 1.0

<u>IF</u>: DL < 1.0 THEN: CLS > 1.0 Step 8 Calculate Actual Lamp Resistance

$$RL = \frac{VLR}{IL}$$

Where: RL = Actual Lamp Resistance - Ohms

Step 9 Calculate Average Lamp Current

IL = IL * DL

Where: IL = Average Lamp Current - Amperes

Step 10 Calculate Effective Lamp Resistance

 $\overline{RL} = VLR/\overline{IL}$

Where: RL = Effective Lamp Resistance - Ohms

Step 11 Obtain Raw Power Bus Voltage Limits and User Load Cable Resistance

VMINIV = Minimum Raw Power Bus Voltage - VDC

VMAXIV = Maximum Raw Power Bus Voltage - VDC

RLL = User Load Cable Resistance - Ohms

Step 12 Calculate PCD Group Voltage Increment

VINCIV = (VMAXIV - VMINIV)/50.0

Where: VINCIV = PCD Group Voltage Increment - VDC

Step 13 Obtain PCD Equipment Temperature Characteristics

TTAMB = Ambient Temperature - °F

DTTPCD = PCD Equipment Temperature Rise - °F

Step 14 Calculate PCD Equipment Temperature

TTPCD = TTAMB + DTTPCD

Where: TTPCD = PCD Equipment Temperature - °F

Step 15 Compare Raw Power Bus Minimum Voltage With Reference

IF: VMINIV < VRIO THEN: GO TO STEP 16

IF: (VMINIV > VRIO) and (VMINIV < VRISA)</pre>

THEN: GO TO STEP 24

<u>IF</u>: VMINIV > VRISA THEN: GO TO STEP 29

Where: VRIO = Minimum (No Current) Voltage Drop - VDC

Across Lamp Regulator in "Saturated" Condition

VRISA = Voltage level at which lamp regulator - VDC changes from "Saturated" condition operation

to "Active" operation

VRIO = VRIOT{TTPCD}

VRISA = VRISAT(TTPCD)

Step 16 Initialize Counter and Lamp Regulator Voltage

J = 1

VRI(J) = VMINIV

Step 17 Calculate Lamp Regulator Current

IRI(J,1) = 0.0

 $IRI(J_{.2}) = 0.0$

IRI(J,3) = 0.0

Where: VRI(J) = Lamp Regulator Input Voltage - VDC

IRI(J,K) = Lamp Regulator Input Current - Volts

Step 17 (contd)

When: K = 1 - Lamp Off

K = 2 - Lamp Flashing - Effective

K = 3 - Lamp On

Step 18 Increment Counter and Lamp Regulator Voltage and Compare With Reference

J = J + 1

VRI(J) = VRI(J - 1) + VINCIV

IF: (VRI(J) > VRIO) and IF: (VRI(J) < VMAXIV) THEN: GO TO STEP 20

IF: VRI(J) > VMAXIV THEN: GO TO STEP 32

Step 19 Calculate Lamp Regulator Currents

IRI(J,1) = 0.0

 $IRI(J_{.2}) = 0.0$

IRI(J,3) = 0.0

REPEAT STEPS 18 AND 19

Step 20 Calculate Lamp Regulator Current

IRI(J,1) = 0.0

IRI(J,2) = (VRI(J) - VRIO)/(RL + ZRS)

IRI(J,3) = (VRI(J) - VRIO)/(RL + ZRS)

Where: ZRS = Regulator Impedance in "Saturated" Condition - Ohms

ZRS = ZRST(TTPCD)

ZRST = Input Table of ZRS as a function of TTPCD

Step 21 Increment Counter and Lamp Regulator Voltage and Compare with Reference

J = J + 1

VRI(J) = VRI(J - 1) + VINCIV

IF: (VRI(J) > VRISA) and

IF: (VRI(J) < VMAXIV)
THEN: Go to Step 22</pre>

IF: VRI(J) > VMAXIV THEN: GO TO STEP 32

REPEAT STEPS 20 AND 21

Step 22 Calculate Lamp Regulator Currents

IRI(J,1) = 0.0

 $IRI(J,2) = V_{LB}/(\overline{RL} + ZRA)$

 $IRI(J,3) = V_{LR}/(RL + ZRA)$

Where: V_{LR} = Regulator Output Voltage at Zero Current - Volts

ZRA = Regulator impedance in "Active" region - Ohms

VLB = VLBT{VRI, TTPCD}

 $ZRA = ZRAT\{TTPCD\}$

Where: VLBT = Input Table of VLB as a function of VRI and TTPCD

ZRAT = Input Table of ZRA as a function of TTPCD

Step 23 Increment Counter and Lamp Regulator Voltage and Compare With Reference

J = J + 1

VRI(J) = VRI(J - 1) + VINCIV

IF: VRI(J) > VMAXIV THEN: GO TO STEP 32

REPEAT STEPS 22 AND 23

Step 24 Initialize Counter and Lamp Regulator Voltage

J = 1

VRI(J) = VMINIV

Step 25 Calculate Lamp Regulator Currents

IRI(J,1) = 0.0

 $IRI(J,2) = (VRI(J) - VRIO)/(\overline{RL} + ZRS)$

IRI(J,3) = (VRI(J) - VRIO)/(RL + ZRS)

Step 26 Increment Counter and Lamp Regulator Voltage and Compare with Reference

J = J + 1

VRI(J) = VRI(J - 1) + VINCIV

 $\frac{\text{IF}:}{\text{IF}:} \qquad (\text{VRI}(J) > \text{VRISA}) \text{ and} \\ (\text{VRI}(J) < \text{VMAXIV})$

THEN: GO TO STEP 27

IF: VRI(J) > VMAXIV
THEN GO TO STEP 32

REPEAT STEPS 25 AND 26

Step 27 Calculate Lamp Regulator Currents

IRI(J,1) = 0.0

 $IR1(J_*2) = VLB/(RL + ZRA)$

1RI(J,3) = VLB/(RL + ZRA)

Step 28 Increment Counter and Lamp Regulator Voltage and Compare with Reference

J = J + 1

VRI(J) = VRI(J - 1) + VINCIV

IF: VRI(J) > VMAYIV THEN: GO TO STEP 32

REPEAT STEPS 27 AND 28

Step 29 Initialize Counter and Lamp Regulator Voltage

J = 1

VRI(J) = VMINIV

Step 30 Calculate Lamp Regulator Currents

IRI(J,1) = 0.0

IRI(J,2) = VLB/(RL + ZRA)

IRI(J,3) = VLB/(RL + ZRA)

Step 31 Increment Counter and Lamp Regulator Voltage and Compare with Reference

J = J + 1

VRI(J) = VRI(J - 1) + VINCIV

IF: VRI(J) > VMAXIV THEN: GO TO STEP 32

REPEAT STEPS 30 AND 31

Step 32 Calculate PCD Group Current

XI(J,K) = IHI(J) + IRI(J,K)

 $IHI(J) = IHIT\{VRI(J), TTPCD\}$

J = 1, 50

K = 1, 3

Where: XI(J,K) = PCD Group Current - Amperes

IHI(J) = Housekeeping Load Regulator Input

Current - Amperes

IHIT = Input Table of IHI(J) as a function of VRI(J)

and TTPCD

Step 33 Calculate PCD Group Voltage

XX(J,K) = VRI(J) + XI(J,K) * RLL

J = 1,50

K = 1, 3

Where: XX(J,K) = PCD Group Voltage - VDC

5. MERGE

The MERGE program set is a group of computer programs (TDF14, DECK280, and LISTMERGE) which provide a support function to the DSPA program. The purpose of the MERGE package is to provide a means for extracting actual weather information from NOAA data tapes and using it as input to the DSPA program. The three MERGE programs and their functions are described below.

FIGURE 5-1. MERGE COMPUTER PROGRAMS OVERVIEW

5.1. Creation of a MERGE File (TDF14)

The building of the skeletal MERGE file is controlled by the TDF14 program. The user requests the creation of a MERGE file to span a particular period of years for a selected location from a NOAA TDF-14 weather tape. The TDF14 program then extracts the date, temperature, and wind velocity data from the NOAA tape, builds a one-day record consisting of 24 hourly observations of temperature and wind velocity and space for solar insolation, and sequentially writes the day's information to a MERGE file.

FIGURE 5-2. TDF14 COMPUTER PROGRAM

Step 1	Obtain one day's weather data from TDF-14 input tape
Step 2	Convert TDF-14 data to numerics (DECODE)
Step 3	Write MERGE file record
Step 4	If: end of TDF-14 tape, Then: Stop Program Otherwise: Go TO STEP 1

5.2 Addition of Solar Insolation Data to MERGE File (DECK280)

The addition of solar insolation data to a MERGE file created by TDF14 is performed by the DECK280 program. The user requests that, for a particular MERGE location, NOAA DECK-280 tape data from a specified location be inserted into the file. The DECK280 program extracts the solar radiation data (in Langleys) from the NOAA tape, converts the data to watts/square meter, and adds the data to the appropriate day and hour position in the MERGE file.

FIGURE 5-3. DECK280 COMPUTER PROGRAM

Step 1	Obtain solar radiation data from DECK-280 input tape
Step 2	Convert DECK-280 data to numerics (DECODE)
Step 3	Convert DECK-280 data to watts/square meter Q = S * 41.82/3.6
	where: S = Solar Insolation - Langleys Q = Solar Insolation - watts/meter ²
Step 4	Add solar insolation data to appropriate day and hour in MERGE file
Step 5	If: end of Deck-280 tape, Then: Stop Program Otherwise: GO TO STEP 1

5.3 Displaying MERGE File Data (LISTMERGE)

The averge MERGE file consists of from 10 to 12 years of hourly temperature, wind velocity, and solar insolation data recordings. The LISTMERGE program permits the user to randomly view any number of sequential days within the file beginning at any date contained in the file.

FIGURE 5-4. LISTMERGE COMPUTER PROGRAM

Step 1	obtain user request date (YYDDD) and number of days to be displayed (N)
Step 2	Initialize day counter I = 1
Step 3	Obtain MERGE record for day YYDDD
Step 4	Print MERGE record information
Step 5	<pre>If: last day of MERGE file, Then: Stop Program Otherwise, if: I > N, Then: GO TO STEP 1 Otherwise: I = I + 1</pre>
Step 6	Increment request date YYDDD = YYDDD + 1

<u>Step 7</u> <u>If:</u> DDD > 366

Then: YY = YY + 1

Then: DDD = 1

Step 8 GO TO STEP 3

6. STAT

The STAT program set is a group of computer programs (STATS and PROFILE) which provide a support function to the DSPA program. The purpose of the STAT package is to provide a means of producing a single year of statistical data from a MERGE file, and using it as input to the DSPA program. The two STAT programs and their functions are described below.

FIGURE 6-1. STAT COMPUTER PROGRAMS OVERVIEW

6.1 Statistical Analysis of MERGE File Data (STATS)

The STATS program uses the 10 to 12 years of MERGE file weather data to produce a one-year statistical file. The procedure involves the averaging of data for a given hour of a given day of each of the years contained in the MERGE file. The statistical data is then written to a STATS file which is used as input to the PROFILE program (see Section 6.2 below). Specifically, the STATS program computes and outputs (both to the STATS file and to a printer) the following statistics:

- la) Average temperature for each hour of one year.
- 1b) Average wind velocity for each hour of one year.
- lc) Average solar insolation for each hour of one year.
- 2a) Average wind velocity for each day of each data year.
- 2b) Average solar insolation for each day of each data year.
- 3a) Average wind velocity for each day of one year.
- 3b) Average solar insolation for each day of one year.
- 4a) Average temperature for each month of each data year.

5040-27 (Change 1)

- 4b) Average wind velocity for each month of each data year.
- 4c) Average solar insolation for each month of each data year.
- 5a) Average temperature for each month of one year.
- 5b) Average wind velocity for each month of one year.
- 5c) Average solar insolation for each month of one year.
- 6a) Standard deviation of statistics gathered in 4a.
- 6b) Standard deviation of statistics gathered in 4b.
- 6c) Standard deviation of statistics gathered in 4c.
- 7a) Maximum temperature for each year.
- 7b) Minimum temperature for each year.
- 8a) Mean and standard deviation of statistics gathered in 7a.
- 8b) Mean and standard deviation of statistics gathered in 7b.

PROGRAM ALGORITHMS

Step 1 Initialize yearly minimum and maximum temperatures

TMIN(J) = 1000.0

TMAX(J) = -1000.0

for J=1, 12

Step 2 Initialize monthly sums for each year

MTSUM(J) = 0.0

MVSUM(J) = 0.0

MQSUM(J) = 0.0

for J=1, 12

where: MTSUM(J) = monthly temperature total for year J

MVSUM(J) = monthly wind velocity total for year J

MQSUM(J) = monthly solar insolation total for year J

FIGURE 6-2. STATS COMPUTER PROGRAM

5040-27 (Change 1)

```
Step 3
           Initialize daily sums for each year
           DVSUM(J) = 0.0
           DQSUM(J) = 0.0
           for J=1, 12
           where: DVSUM(J) = daily wind velocity total for year J
                  DQSUM(J) = daily solar insolation total for year J
          Obtain hourly temperature, wind velocity, and solar insolation
Step 4
           data for same day of each MERGE year (NYRS < 12)
          T(I,J) = temperature for hour I of year J
           V(I,J) = wind velocity for hour I of year J
           Q(I,J) = solar insolation for hour I of year J
Step 5
         Initialize hour counter
           I = 1
Step 6
           Initialize hourly sums
           TSUM = 0.0
           VSUM = 0.0
           QSUM = 0.0
           where: TSUM = hourly temperature total over all years
                  VSUM = hourly wind velocity total over all years
                   QSUM = hourly solar insolation total over all years
           Initialize year counter
Step 7
           J = 1
Step 8
           Add hour's data to sums
           TSUM = TSUM + T(I,J)
           VSUM = VSUM + V(I,J)
           QSUM = QSUM + (Q(I,J))
           DVSUM(J) = DVSUM(J) + V(I,J)
           DQSUM(J) = DQSUM(J) + Q(I,J)
           MTSUM(J) = MTSUM(J) + T(I,J)
           MVSUM(J) = MVSUM(J) + V(I,J)
           MQSUM(J) = MQSUM(J) + Q(I,J)
```

```
Step 9
           Select minimum and maximum temperatures
           TMIN(J) = AMINI(TMIN(J), T(I,J))
           TMAX(J) = AMAX1(TMAX(J),T(I,J))
          If: J = NYRS
Step 10
           Then: GO TO STEP 11
           Otherwise: J=J+1
          And: GO TO STEP 8
          Compute hourly statistics
Step 11
           TOUT(I) = TSUM/NYRS
           VOUT(I) = VSUM/NYRS
           QOUT(I) = QSUM/NYRS
           where: TOUT(I) = average temperature for hour I
                   VOUT(I) = average wind velocity for hour I
                   QOUT (I) = average solar insolation for hour I
Step 12
          If: I = 24
           Then: GO TO 13
           Otherwise: I=I+1
           And: TO TO STEP 6
Step 13
          Compute daily statistics for each year
           VDAY(J) = DVSUM(J)/(24 * NYRS)
           QDAY(J) = DQSUM(J)/(24 * NYRS)
           for J=1,NYRS
           where: VDAY(J) = average wind velocity for given day of year J
                   QDAY(J) = average solar insolution for given day of
                            year J
          Write statistical day record to STATS file
Step 14
           If: last day of month
Step 15
           Then: GO TO STEP 16
           Otherwise: GO TO STEP 3
```

Step 16 Compute monthly statistics for each year

TOUT(J) = MTSUM(J)/(24*NYRS*NDYS)

YOUT(J) = MVSUM(J)/(24*NYRS*NDYS)

QOUT(J) = MQSUM(J)/(24*NYRS*MDYS)

for J=1,NYRS

where: TOUT(J) = g verage temperature for given month of year J

VOUT(J) = average wind velocity for given month of

year J

QOUT(J) = average solar insolation for given month of

year J

NDYS = number of days in current month

Step 17 Compute mean monthly statistics and standard deviations

$$XOUT(13) = \sum_{i=1}^{NYRS} XOUT(J)/NYRS$$

$$XOUT(14) = SQRT \left[\left(\sum_{j=1}^{NYRS} XOUT(j) **2 - NYRS* \left(\sum_{j=1}^{NYRS} XOUT(j) \right) **2 \right) / (NYRS-1) \right]$$

where: XOUT is used to represent each of the TOUT, VOUT, and QOUT variables since the equations are of the same form for each

Step 18 Write statistical month record to STATS file

Step 19 If: last day of year

Then: GO TO STEP 20

Otherwise: GO To STEP 2

Step 20 Compute mean TMIN and TMAX and standard deviations

$$TOUT(1) = \sum_{J=1}^{NYRS} TMIN(J)/NYRS$$

TOUT(2) = SQRT
$$\left[\left(\sum_{J=1}^{NYRS} TMIN(J) **2 - NYRS* \left(\sum_{J=1}^{NYRS} TMIN(J) \right) **2 \right/ (NYRS-1) \right]$$

TOUT(3) =
$$\sum_{J=1}^{NYRS} TMAX(J)/NYRS$$

$$TOUT(1) = SQRT \left[\left(\sum_{J=1}^{NYRS} TMAX(J)**2 - NYRS* \left(\sum_{J=1}^{NYRS} TMAX(J) \right) **2 \right) / (NYRS-1) \right]$$

Step 21 Write yearly statistical data to STATS file

Step 22 Stop Program

6.2 Environmental Profiling of STATS Data (PROFILE)

The PROFILE program uses the one year of statistically prepared STATS data to produce a modified statistical file for use with the DSPA program. The procedure involves the scaling of the STATS file data, on a monthly basis, by factors computed from user-specified proportions and confidence levels. In addition, the PROFILE program will, upon request, perform a worst case analysis for low solar insolation, low wind, or high wind periods. The revised weather data is written to a STAT file for subsequent use as input to the DSPA program.

FIGURE 6-3. PROFILE COMPUTER PROGRAM

```
Step 1
           Read monthly user input request
           ALPHAQ = confidence level (0 to 1) for solar insolation data
           ALPHAT = confidence level (0 to 1) for temperature data
           ALPHAV = confidence level (0 to 1) for wind velocity data
           ALPHHV = confidence level (0 to 1) for high wind worst case
           ALPHLQ = confidence level (0 to 1) for low insolation worst
                    case
           ALPHLV = confidence level (0 to 1) for low wind worst case
            LH(1) = temperature flag: -1 = low profile
                                       0 = means profile
                                      +l = high profile
            LH(2) = wind velocity flag (-1, 0, or +1)
            LH(3) = solar insolation flag (-1, 0, or +1)
            LH(4) = low insolation flag: 0 = no worst case analysis
                                         +1 = worst case analysis
            LH(5) = low wind flag (0 or +1)
            LH(6) = high wind flag (0 or +1)
              PHV = scale factor (>1) for high wind worst case
              PLQ = scale factor (0 to 1) for low insolation worst case
              PLV = scale factor (0 to 1) for low wind worst case
               PQ = proportion (0 to 1) for solar insolation data
               PT = proportion (0 to 1) for temperature data
               PV = proportion (0 to 1) for wind velocity data
Step 2
           Compute tolerance limit factors
           ZA = F\{A, ZTABLE\}
           ZP = F\{P, ZTABLE\}
           AL = 1.0 - ZA^{4}/(2.0^{4}(NYRS - 1))
           BL = ZP^{**}2 - ZA^{**}2/NYRS
           CL = (ZP + SQRT(ZP##2 - AL#BL))/AL
            for each of CLT, CLV, and CLQ
```

5040-27 (Change 1)

```
where: A = specified confidence level
                  P = specified proportion
                   ZTABLE = table of inverse error function vs. percent
                   CLT = temperature tolerance limit factor
                   CLV = wind velocity tolerance limit factor
                   CLQ = solar insolation tolerance limit factor
Step 3
          Compute low/high delta/scale factors
          DLHT = LH(1) * CLT * TM(2)
          RLHV = 1.0 + LH(2) * CLV * VM(2)/VM(1)
           RLHQ = 1.0 + LH(3) * CLQ * QM(2)/QM(1)
          where: DLHT = temperature delta factor
                   RLHV = wind velocity scale factor
                   RLHQ = solar insolation scale factor
                  TM(2) = monthly temperature standard deviation
                  VM(1) = average monthly wind velocity
                  VM(2) = monthly wind velocity standard deviation
                  QM(1) = average monthly solar insolation
                  QM(2) = monthly solar insolation standard deviation
           Read next STATS file day
Step 4
           T(I) = temperature for hour I
           V(I) ≈ wind velocity for hour I
           Q(I) = solar insolation for hour I
           for I = 1,24
           Modify STATS data
Step 5
           T(I) = DLHT + T(I)
           V(I) = RLHV * V(I)
           Q(I) = RLHQ * Q(I)
          Write modified day's data to STAT file
Step 6
```

Step 7 If: last day of month

Then: GO TO STEP 8

Otherwise: GO TO STEP 4

If: worst case analysis requested Step 8

Then: GO TO STEP 9

Otherwise: GO TO STEP 13

Compute Poisson maximum likelihood estimate Step 9

LAMBDA = (SUM - CNT)/CNT

for each of high wind, low wind, and low insolation

where: LAMBDA = maximum likelihood estimate

SUM = total number of bad* days for current month

CNT = number of strings of bad days for current

month

Compute number of sequential worst case days for current month Step 10

 $\sum_{\text{NR such that}}^{\text{NR}} \frac{\sum_{\text{J=1}}^{\text{NM}} \text{LAMBDA**J/J!}}{\text{NDYS}} \geq \text{ confidence level}$

NDYS LMBDA**1/1:

for each NRHV, NRLQ, NRLV

where: NDYS = number of days in current month

NRHV = number of sequential high wind worst case days

to be centered about the 20th day

NRLQ = number of sequential low insolation worst

case days to be centered about the 15th day

NRLV = number of sequential low wind worst case

days to be centered about the 10th day

A bad day is a day for which (Q < PLQ Q avg. for month)

Step 11 Modify worst case day's data for appropriate days of current month.

V(I) = PLV * V(I) for low wind period

Q(I) = PLQ * Q(I) for low insolation period

V(I) PHV * V(I) for high wind period

Step 12 Re-write worst case days to STAT file

Step 13 If: last day of year

Then: GO TO STEP 14

Otherwise: TO TO STEP 1

Step 14 Stop Program